Drought stress can significantly reduce wheat growth and development as well as grain yield. This study investigated morpho-physiological and hormonal (abscisic (ABA) and salicylic (SA) acids) responses of six winter wheat varieties during stem elongation and anthesis stage as well grain yield-related traits were measured after harvest. To examine drought response, plants were exposed to moderate non-lethal drought stress by withholding watering for 45 and 65% of the volumetric soil moisture content (VSMC) for 14 days at separate experiments for each of those two growth stages. During the stem elongation phase, ABA was increased, confirming the stress status of plants, and SA showed a tendency to increase, suggesting their role as stress hormones in the regulation of stress response, such as the increase in the number of leaves and tillers in drought stress conditions, and further keeping turgor pressure and osmotic adjustment in leaves. At the anthesis stage, heavier drought stress resulted in ABA accumulation in flag leaves that generated an integrated response of maturation, where ABA was not positively correlated with any of investigated traits. After harvest, the variety Bubnjar, followed by Pepeljuga and Anđelka, did not significantly decrease the number of grains per ear and 1000 kernel weight (except Anđelka) in drought treatments, thus, declaring them more tolerant to drought. On the other hand, Rujana, Fifi, and particularly Silvija experienced the highest reduction in grain yield-related traits, considering them drought-sensitive varieties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921141 | PMC |
http://dx.doi.org/10.3390/plants12030418 | DOI Listing |
J Agric Food Chem
December 2024
College of Horticulture, Henan Agricultural University, Zhengzhou 450046, PR China.
Drought limits crop growth and yield. Inoculation with plant growth-promoting rhizobacteria (PGPR) emerges as a promising strategy to protect crops against drought. However, the number of drought-tolerant PGPR is limited, and the regulation mechanisms remain elusive.
View Article and Find Full Text PDFPlant Signal Behav
December 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China.
Abscisic acid (ABA) mediated stomatal closure is a highly effective mode of active stomatal regulation under drought stress. Previous studies on stomatal regulation have primarily focused on the leaves of vascular plants, while research on the stomatal behavior of bulbous plants remains unknown. In addition, ABA-induced stomatal regulation in bulbs has yet to be explored.
View Article and Find Full Text PDFSci Rep
December 2024
Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia.
The cultivation of common beans (Phaseolus vulgaris L.) in semi-arid regions is affected by drought. To explore potential alleviation strategies, we investigated the impact of inoculation with Bacillus velezensis, and the application of acetylsalicylic acid (ASA) via foliage application (FA), which promote plant growth and enhance stress tolerance.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education)/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University/Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, China. Electronic address:
Rab GTPases are a class of small GTP-binding proteins, play crucial roles in the membrane transport machinery with in eukaryotic cells. They dynamically regulate the precise targeting and tethering of transport vesicles to specific compartments by transitioning between active and inactive states. In plants, Rab GTPases are classified into eight distinct subfamilies: Rab1/D, Rab2/B, Rab5/F, Rab6/H, Rab7/G, Rab8/E, Rab11/A, and Rab18/C.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Wheat Biology and Genetic Improvement on Northwestern China, Ministry of Agriculture and Rural Affairs, Xianyang, 712100, China. Electronic address:
Photosynthesis drives crop growth and production, and strongly affects grain yields; therefore, it is an ideal trait for wheat drought resistance breeding. However, studies of the negative effects of drought stress on wheat photosynthesis rates have lacked accurate evaluation methods, as well as high-throughput techniques. We investigated photosynthetic capacity under drought stress in wheat varieties with varying degrees of drought stress resistance using hyperspectral and chlorophyll fluorescence (ChlF) imaging data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!