Maximal oxygen consumption (V˙O) is a major determinant of 5-km running time-trial (TT) performance. Glycerol-induced hyperhydration (GIH) could improve V˙O in recreationally active persons through an optimal increase in plasma volume. Moreover, ingestion of a large bolus of cold fluid before exercise could decrease thermal stress during exercise, potentially contributing to improved performance. We determined the effect of GIH on 5-km running TT performance in 10 recreationally active individuals (age: 24 ± 4 years; V˙O: 48 ± 3 mL/kg/min). Using a randomized and counterbalanced protocol, participants underwent two, 120-min hydration protocols where they ingested a 1) 30 mL/kg fat-free mass (FFM) of cold water (~4 °C) with an artificial sweetener + 1.4 g glycerol/kg FFM over the first 60 min (GIH) or 2) 7.5 mL/kg FFM of cold water with an artificial sweetener over the first 20 min (EUH). Following GIH and EUH, participants underwent a 5-km running TT at 30 °C and 50% relative humidity. After 120 min, GIH was associated with significantly greater fluid retention (846 ± 415 mL) and plasma volume changes (10.1 ± 8.4%) than EUH, but gastrointestinal (GI) temperature did not differ. During exercise, 5-km running TT performance (GIH: 22.95 ± 2.62; EUH: 22.52 ± 2.74 min), as well as heart rate, GI temperature and perceived exertion did not significantly differ between conditions. This study demonstrates that the additional body water and plasma volume gains provided by GIH do not improve 5-km running TT performance in the heat in recreationally active individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919238PMC
http://dx.doi.org/10.3390/nu15030599DOI Listing

Publication Analysis

Top Keywords

5-km running
20
recreationally active
16
active individuals
12
plasma volume
12
running performance
12
glycerol-induced hyperhydration
8
running time-trial
8
time-trial performance
8
performance heat
8
heat recreationally
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!