The recovery of bioactive compounds from crop byproducts leads to a new perspective way of waste reutilization as a part of the circular economy. The present study aimed at an exhaustive metabolite profile characterization of globe artichoke and cauliflower byproducts (leaves, stalks, and florets for cauliflower only) as a prerequisite for their valorization and future implementations. The metabolite profile of aqueous and organic extracts of byproducts was analyzed using the NMR-based metabolomics approach. Free amino acids, organic acids, sugars, polyols, polyphenols, amines, glucosinolates, fatty acids, phospho- and galactolipids, sterols, and sesquiterpene lactones were identified and quantified. In particular, globe artichoke byproducts are a source of health-beneficial compounds including -inositol (up to 10.1 mg/g), -inositol (up to 1.8 mg/g), sesquiterpene lactones (cynaropicrin, grosheimin, dehydrocynaropicrin, up to 45.5 mg/g in total), inulins, and chlorogenic acid (up to 7.5 mg/g), whereas cauliflower byproducts enclose bioactive sulfur-containing compounds -methyl-L-cysteine -oxide (methiin, up to 20.7 mg/g) and glucosinolates. A variable content of all metabolites was observed depending on the crop type (globe artichoke vs. cauliflower) and the plant part (leaves vs. stalks). The results here reported can be potentially used in different ways, including the formulation of new plant biostimulants and food supplements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919138 | PMC |
http://dx.doi.org/10.3390/molecules28031363 | DOI Listing |
Antioxidants (Basel)
January 2025
Department for Innovation in Biological, Agro-Food and Forest Systems, Tuscia University, 01100 Viterbo, Italy.
In addition to the immature edible flower heads, the cultivation of globe artichoke ( L. var. (L.
View Article and Find Full Text PDFJ Food Sci
January 2025
Faculty of Health Sciences, Nutrition and Dietetics Department, Istanbul Aydin University, Istanbul, Turkey.
Although the gluten-free market is expanding and offers a variety of products, there are still some deficiencies in the nutritional and sensory quality of these products. Therefore, this study explores the bioaccessibility of phenolic compounds, nutritional quality, and textural properties of gluten-free muffins enriched with artichoke leaves and green lentil protein (GLP) isolate, two novel ingredients introduced together for the first time in this context. The incorporation of GLP isolate aims to enhance the protein content, while artichoke leaves are evaluated for its potential to improve phenolic content and antioxidant activity.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Dipartimento di Farmacia, Università degli Studi di Salerno, via Giovanni Paolo II n. 132, 84084 Fisciano, SA, Italy.
The Italian Carciofo di Paestum () PGI, an artichoke variety from the Campania region, was investigated for its potential to reuse by-products for food supplements. EtOH:HO 50:50 and 75:25 extracts of its leaves were analyzed for phenolic and flavonoid content and antioxidant activity (TEAC: 1.90 and 1.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
December 2024
Department of Forensic Medicine & Toxicology, College of Veterinary Medicine, University of Sadat City, Sadat city, Egypt.
This study evaluated the efficacy of integrating artichoke (Cynara scolymus) leaf extract (CSLE) into the Nile tilapia (Oreochromis niloticus) diet to mitigate fluoride (FLR) adverse effects on growth, immune components, renal and hepatic function, and the regulation of oxidative stress, inflammation, and apoptosis-related genes. A 60-day feeding experiment was conducted with 240 O. niloticus fish separated into four groups as follows: a control group (CON) fed on a basic diet, a CSLE group receiving 300 mg CSLE/kg via the diet, a FLR group exposed to 6.
View Article and Find Full Text PDFMetabolites
December 2024
Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, Oujda 60000, Morocco.
Hyperlipidemia is a major contributor to metabolic complications and tissue damage, leading to conditions such as liver steatosis, atherosclerosis, and obesity. This study aimed to investigate the effects of aqueous artichoke bract extract (AE) on lipid metabolism, liver antioxidative defense, and liver steatosis in mice fed a high-fat, high-sucrose diet while elucidating the underlying mechanisms. An 8-week study used hyperlipidemic mice treated with AE at daily doses of 100 and 200 mg/kg bw, compared to fenofibrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!