Diamond holds promise for optoelectronic devices working in high-frequency, high-power and high-temperature environments, for example in some aspect of nuclear energetics industry processing and aerospace due to its wide bandgap (5.5 eV), ultimate thermal conductivity, high-pressure resistance, high radio frequency and high chemical stability. In the last several years, p-type B-doped diamond (BDD) has been fabricated to heterojunctions with all kinds of non-metal oxide (AlN, GaN, Si and carbon-based semiconductors) to form heterojunctions, which may be widely utilized in various optoelectronic device technology. This article discusses the application of diamond-based heterostructures and mainly writes about optoelectronic device fabrication, optoelectronic performance research, LEDs, photodetectors, and high-electron mobility transistor (HEMT) device applications based on diamond non-metal oxide (AlN, GaN, Si and carbon-based semiconductor) heterojunction. The discussion in this paper will provide a new scheme for the improvement of high-temperature diamond-based optoelectronics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921172 | PMC |
http://dx.doi.org/10.3390/molecules28031334 | DOI Listing |
Environ Res
December 2024
Environment Research Institute, Shandong University, Qingdao, 266237, PR China; School of Mining and Petroleum Engineering, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada. Electronic address:
Angew Chem Int Ed Engl
December 2024
Nanjing University, Biomedical Engineering, 22 Hankou Rd, 210093, Nanjing, CHINA.
Topotactic transformation is an emerging strategy for synthesizing materials with exotic functional properties. In this report, instead of producing new crystals with related structures, we exploited the topotactic transformation phenomenon to spontaneously produce compositionally diverse nanostructures on the transforming substrate. The surface of magnetite nanoparticles (Fe3O4 NPs) is topotactically transformed into maghemite (γ-Fe2O3).
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China.
Oxygen evolution reaction (OER) is an indispensable anode reaction for sustainable hydrogen production from water electrolysis, yet overreliance on metal-based catalysts featured with vibrant d-electrons. It still has notable gap between metal-free and metal-based electrocatalysts, due to lacking accurate and efficient p-band regulation methods on non-metal atoms. Herein, a molecular modularization strategy is proposed for fine-tuning the p-orbital states of series metal-free covalent organic frameworks (COFs) for realizing OER performance beyond benchmark precious metal catalysts.
View Article and Find Full Text PDFSmall Methods
December 2024
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
This work reports boron and oxygen dual-doped carbon nitride nanotubes (B/O-CNNTs) prepared via a copolymerization process for electrocatalytic ammonia synthesis from nitrogen gas (NRR) and nitrate (NORR) sources, respectively. By adjusting the dosage of boron oxide precursor, the texture and content of B/O dual dopants and the coordination environment in the resulting 1D CNNTs can be tuned. The best B/O-CNNTs can achieve maximum Faradaic efficiencies of 35% and 96% at -1.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!