The mosquito significantly impacts public health, with vector control remaining the most efficient means of reducing the number of arboviral disease cases. This study screened the larvicidal and pupicidal activity of common edible plant extracts. L. (black pepper) extract production was optimized using accelerated solvent extraction (ASE) and validated following regulatory requirements using HPLC-PDA analytical methodology to quantify its major component-piperine. Larvicidal activity was determined for the standardized fruit ethanol extract (LC 1.1 µg/mL) and piperine standard (LC 19.0 µg/mL). Furthermore, 9-day residual activity was determined for the extract (4 µg/mL) and piperine (60 µg/mL), with daily piperine quantification. Semi-field trials of solid extract formulations demonstrated 24-day activity against larvae. Thus, the standardized extract emerges as a potential candidate for insecticide development to control the arboviral vector.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921162PMC
http://dx.doi.org/10.3390/molecules28031264DOI Listing

Publication Analysis

Top Keywords

edible plant
8
plant extracts
8
activity determined
8
extract µg/ml
8
µg/ml piperine
8
extract
6
extracts validation
4
validation ethanolic
4
ethanolic extract
4
extract natural
4

Similar Publications

Background: Edible oils are susceptible to contamination with polycyclic aromatic hydrocarbons (PAHs) throughout production, storage, and transportation processes due to their lipophilic nature. The necessity of quantifying PAHs present in complex oil matrices at trace levels, which bind strongly to impurities in oil matrices, poses a major challenge to the accurate quantification of these contaminants. Therefore, the development of straightforward and effective methods for the separation and enrichment of PAHs in oil samples prior to instrumental analysis is paramount to guaranteeing food safety.

View Article and Find Full Text PDF

Determination of five alternaria toxins in peppermint by dispersive solid-phase extraction coupled with ultra-high performance liquid chromatography-tandem mass spectrometry based on MOF-808-TFA.

Food Chem

January 2025

School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330031, People's Republic of China. Electronic address:

An efficient and rapid ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MSMS) method was developed for simultaneous determination of 5 alternaria toxins (ATs) in edible and medicinal plant - peppermint using MOF-808-trifluoroacetic acid (MOF-808-TFA) as the adsorbent. Characterization methods such as scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and N adsorption-desorption demonstrated that the synthesized MOF-808-TFA had a regular ortho-octahedral configuration and high specific surface area. Under the optimal conditions, the 5 ATs showed good linearity (R ≥ 0.

View Article and Find Full Text PDF

Strawberry fruits are highly perishable and have a limited shelf life. Therefore, effective methods such as essential oils (EOs) and edible coatings are required to mitigate spoilage and maintain fruit quality during storage. In the current study, Echinophora platyloba EO was extracted and subsequently formulated into a nanoemulsion.

View Article and Find Full Text PDF

Plant protein-based edible film and coatings have emerged as eco-friendly alternatives to synthetic packaging, offering biodegradable, non-toxic solutions. Their biocompatibility and film-forming properties make them suitable for direct application on food products, reducing reliance on non-degradable plastics and lowering environmental pollution. Despite their promising advantages, challenges remain in optimizing mechanical properties, production scalability, and consumer acceptance.

View Article and Find Full Text PDF

Integration of transcriptomics and metabolomics reveals the mechanism of Glycyrrhizae Radix Et Rhizoma extract inhibiting CCL5 in the treatment of acute pharyngitis.

Phytomedicine

January 2025

Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China. Electronic address:

Background: Acute pharyngitis (AP) is a common condition marked by inflammation of the oropharynx, which can lead to severe throat swelling, breathing difficulties, and even suffocation, significantly impacting quality of life. Despite the beneficial anti-inflammatory activity of Glycyrrhizae Radix Et Rhizoma (GRER) and Isoliquiritigenin (ISL), their pharmacological mechanisms against AP remain unclear.

Purpose: This study explores the mechanisms by which GRER treats AP, utilizing both transcriptomics and metabolomics approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!