Fermentation Extract Alleviates Inflammation in Pneumonia.

Molecules

Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan.

Published: January 2023

The filamentous fungus , also known as koji mold, has been used for centuries in the production of fermented foods in East Asia. fermentation can produce enzymes and metabolites with various bioactivities. In this study, we investigated whether fermentation extract (AOFE) has any effect on (Mp) pneumonia. We performed solid-state fermentation of and obtained the ethanol extract. AOFE was analyzed by HPLC, and the major component was identified to be kojic acid. In vitro, AOFE suppressed Mp growth and invasion into A549 lung epithelial cells as determined by the gentamicin protection assay. AOFE treatment also suppressed Mp-stimulated production of tumor necrosis factor (TNF)-α and interleukin (IL)-6 at mRNA and protein levels in murine MH-S alveolar macrophages. In a mouse model of Mp pneumonia, Mp infection induced a marked pulmonary infiltration of neutrophils, which was significantly reduced in mice pre-treated orally with AOFE. AOFE administration also suppressed the production of proinflammatory cytokines and chemokines in the lungs. Collectively, our results show that AOFE has the potential to be developed into a preventive/therapeutic agent for Mp pneumonia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920650PMC
http://dx.doi.org/10.3390/molecules28031127DOI Listing

Publication Analysis

Top Keywords

fermentation extract
8
extract aofe
8
aofe
7
fermentation
4
extract alleviates
4
alleviates inflammation
4
pneumonia
4
inflammation pneumonia
4
pneumonia filamentous
4
filamentous fungus
4

Similar Publications

Triune Engineering Approach for (+)-valencene Overproduction in Yarrowia lipolytica.

Biotechnol J

January 2025

Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.

The sesquiterpene (+)-valencene, with its flavor and diverse biological functions, holds promise for applications in the food, fragrance, and pharmaceutical industries. However, the low concentration in nature and high cost of extraction limit its application. This study aimed to construct a microbial cell factory to efficiently produce (+)-valencene.

View Article and Find Full Text PDF

Metabolites, Biotransformation, and Plant-Growth Dual Regulatory Activity from Uncovered by the Fermentation Interaction with a Host.

J Agric Food Chem

January 2025

Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China.

One new azaphilone derivative () from in ordinary medium, one new phthalide derivative (), a microbial transformation product of ingredients by , a pair of new austdiol enantiomers (+)- and (-)-, one new epsilon-caprolactone derivative (), and one new ophiobolin-type sesterterpenoid () from the in host medium were reported. The structures were determined by spectroscopic analysis and single-crystal X-ray diffraction. Compounds - could completely inhibit the germination of rice seeds at 50 μg/mL, which is higher than that of the positive control.

View Article and Find Full Text PDF

The research highlights the importance of exploring endophytic microbiomes of medicinal plants to uncover their potential for secondary metabolite production and their role in the biosynthesis of host-derived compounds. This study was aimed to isolate leaf endophytic bacteria of Rauvolfia serpentina, investigate their antibacterial, antioxidant potentials and detect host-origin compound reserpine using Reverse Phase High-Performance Liquid Chromatography (RPHPLC). Untargeted analysis via Ultra High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-HRMS/MS) was conducted for profiling main phytochemicals in the leaves and to explore potential bioactive compounds in bacterial extracts.

View Article and Find Full Text PDF

Objective: This study investigated the fungal contamination profile of cocoa beans from cocoa-growing regions in Ghana, with particular emphasis on the potential impact of ochratoxigenic species.

Methods: A total of 104 fermented and dried cocoa beans were randomly collected from farmers for analysis. Fungal isolation was conducted using potato dextrose agar and malt extract agar media.

View Article and Find Full Text PDF

Probiotics fermentation enhanced the bioactive properties of water extract and improved regulation ability of gut microbiota.

Food Chem X

January 2025

Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China.

This study investigated the probiotic potential of fermented beverages derived from (). Three different beverages were prepared by fermenting water extract with A6-3 ( A6-3), A27-1 ( A27-1), or both for 48 h. The results demonstrated that bioactive compounds from promoted the growth of these two probiotics and preserved their viability for at least 28 days at 4 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!