A growing global emission of engineered nanoparticles (ENPs) into the aquatic environment has become an emerging safety concern that requires methods capable of identifying the occurrence and possibly determining the amounts of ENPs. In this study, we employed sector-field inductively coupled mass spectrometry to assess the presence of ENPs in coastal seawater samples collected from the Black Sea in regions suffering different anthropogenic impacts. Ultrafiltration through commercial 3 kDa membrane filters was shown to be feasible to separate the ENPs from the bulk seawater, and the subsequent ultrasound-mediated acidic dissolution makes the metals constituting the ENPs amenable to analysis. This procedure allowed the ENPs bearing Cu, Zn, V, Mo, and Sn to be for the first time quantitated in seashore surface water, their concentration ranging from 0.1 to 1.0 μg L (as metal) and related to the presence of industry and/or urban stress. While these levels are decreased by natural dilution and possible sedimentation, the monitored ENPs remain measurable at a distance of 2 km from the coast. This can be attributed not only to local emission sources but also to some natural backgrounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9918967PMC
http://dx.doi.org/10.3390/molecules28030994DOI Listing

Publication Analysis

Top Keywords

engineered nanoparticles
8
enps
7
analysis engineered
4
nanoparticles seawater
4
seawater icp-ms-based
4
icp-ms-based technology
4
technology negative
4
negative positive
4
positive samples
4
samples growing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!