In the food industry, the surfaces of processing equipment are considered to be major factors in the risk of food contamination. The cleaning process of solid surfaces is essential, but it requires a significant amount of water and chemicals. Herein, we report the use of foam flows based on alkyl polyglucosides (APGs) to remove spores of on stainless-steel surfaces as the model-contaminated surface. Sodium dodecyl sulfate (SDS) was also studied as an anionic surfactant. Foams were characterized during flows by measuring the foam stability and the bubble size. The efficiency of spores' removal was assessed by enumerations. We showed that foams based on APGs could remove efficiently the spores from the surfaces, but slightly less than foams based on SDS due to an effect of SDS itself on spores removal. The destabilization of the foams at the end of the process and the recovery of surfactant solutions were also evaluated by using filtration. Following a life cycle assessment (LCA) approach, we evaluated the impact of the foam flow on the global environmental footprint of the process. We showed significant environmental impact benefits with a reduction in water and energy consumption for foam cleaning. APGs are a good choice as surfactants as they decrease further the environmental impacts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919089PMC
http://dx.doi.org/10.3390/molecules28030936DOI Listing

Publication Analysis

Top Keywords

foams based
12
based alkyl
8
alkyl polyglucosides
8
apgs remove
8
foams
5
decontamination spores
4
spores model
4
model stainless-steel
4
stainless-steel surface
4
surface foams
4

Similar Publications

Hierarchical Biogenic-Based Thermal Insulation Foam.

ACS Nano

January 2025

Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States.

Biogenic-based foam, renowned for its sustainable and eco-friendly properties, is emerging as a promising thermal insulating material with the potential to significantly enhance energy efficiency and sustainability in building applications. However, its relatively high thermal conductivity, large-pore configurations, and energy-intensive manufacturing processes hinder its widespread use. Here, we report on the scalable, one-pot synthesis of biogenic foams achieved by integrating recycled paper pulp and in situ nanoporous silica formation, resulting in a hierarchical structure comprising both micropores and nanopores.

View Article and Find Full Text PDF

The use of black alder (BA) bark biomass in rigid polyurethane (PUR) foam compositions was the main task of investigation. Extractive compounds isolated from the bark through hot water extraction were used as precursors for bio-polyol synthesis via acid-free liquefaction with the polyether polyol Lupranol 3300 and through oxypropylation with propylene carbonate. The OH functionality and composition of the polyols were analyzed via wet chemistry and FTIR spectroscopy.

View Article and Find Full Text PDF

Dye Adsorbent from Natural Rubber Latex Foam: Efficiency and Post-Utilization.

Polymers (Basel)

January 2025

Department of Rubber Technology and Polymer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani 94000, Thailand.

This study examined the feasibility of using natural rubber (NR) latex foam as a dye adsorbent and antibacterial foam. The dyes used in this experiment were Methylene Blue (MB) and Alizarin Yellow (AY). Foams with that optimum density were further evaluated for adsorption isotherm, kinetics, and thermodynamic data.

View Article and Find Full Text PDF

Bead-foaming technology effectively addresses production cycles, polymerization control, and cellular structure defects in conventional bulk foaming, especially in high-performance PMI foams. In this work, highly expandable PMI beads were synthesized based on the aqueous suspension polymerization of methacrylic acid-methacrylonitrile-tert-butyl methacrylate (MAA-MAN-tBMA) copolymers. The suspension polymerization was stabilized by reducing the solubility of MAA by the salting-out effect and replacing formamide (a common PMI foaming agent) with tBMA.

View Article and Find Full Text PDF

To achieve the actuation of silicone-based foamed composites, a liquid-gas phase transition of the liquid captured in its pores is employed. The uncertainty of key parameters for a single or sequential open-air performance of such soft actuators limits their application. To define the main characteristics of the composites, in this work, two functions of the liquid there were separated: the pore-forming agent (FPA) and working liquid (WL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!