Recently, the realization of the spiral mass transfer of matter has attracted the attention of many researchers. Nano- and microstructures fabricated with such mass transfer can be used for the generation of light with non-zero orbital angular momentum (OAM) or the sensing of chiral molecules. In the case of metals and semiconductors, the chirality of formed spiral-shaped microstructures depends on the topological charge (TC) of the illuminating optical vortex (OV) beam. The situation is quite different with polarization-sensitive materials such as azopolymers, azobenzene-containing polymers. Azopolymers show polarization-sensitive mass transfer both at the meso and macro levels and have huge potential in diffractive optics and photonics. Previously, only one-spiral patterns formed in thin azopolymer films using circularly polarized OV beams and double-spiral patterns formed using linearly polarized OV beams have been demonstrated. In these cases, the TC of the used OV beams did not affect the number of formed spirals. In this study, we propose to use two-beam (an OV and a Gaussian beam with a spherical wavefront) interference lithography for realization spiral mass transfer with the desired number of formed spirals. The TC of the OV beam allows for controlling the number of formed spirals. We show the microstructures fabricated by the laser processing of thin azopolymer films can be used for the generation of OAM light at the microscale with the desired TC. The experimentally obtained results are in good agreement with the numerically obtained results and demonstrate the potential of the use of such techniques for the laser material processing of polarization-sensitive materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920135PMC
http://dx.doi.org/10.3390/nano13030612DOI Listing

Publication Analysis

Top Keywords

mass transfer
16
number formed
12
formed spirals
12
films generation
8
orbital angular
8
angular momentum
8
realization spiral
8
spiral mass
8
microstructures fabricated
8
polarization-sensitive materials
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!