Efficient Iodine Removal by Porous Biochar-Confined Nano-CuO/Cu: Rapid and Selective Adsorption of Iodide and Iodate Ions.

Nanomaterials (Basel)

Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.

Published: January 2023

Iodine is a nuclide of crucial concern in radioactive waste management. Nanomaterials selectively adsorb iodine from water; however, the efficient application of nanomaterials in engineering still needs to be developed for radioactive wastewater deiodination. egg shells possess large surface groups and connecting pores, providing a new biomaterial to remove contaminants. Based on the egg shell-derived biochar (AES biochar) and in situ precipitation and reduction of cuprous, we synthesized a novel nanocomposite, namely porous biochar-confined nano-CuO/Cu (C-Cu). The characterization of C-Cu confirmed that the nano-CuO/Cu was dispersed in the pores of AES biochar, serving in the efficient and selective adsorption of iodide and iodate ions from water. The iodide ion removal by C-Cu when equilibrated for 40 min exhibited high removal efficiency over the wide pH range of 4 to 10. Remarkable selectivity towards both iodide and iodate ions of C-Cu was permitted against competing anions (Cl/NO/SO) at high concentrations. The applicability of C-Cu was demonstrated by a packed column test with treated effluents of 1279 BV. The rapid and selective removal of iodide and iodate ions from water is attributed to nanoparticles confined on the AES biochar and pore-facilitated mass transfer. Combining the advantages of the porous biochar and nano-CuO/Cu, the use of C-Cu offers a promising method of iodine removal from water in engineering applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9919420PMC
http://dx.doi.org/10.3390/nano13030576DOI Listing

Publication Analysis

Top Keywords

iodide iodate
16
iodate ions
16
aes biochar
12
iodine removal
8
porous biochar-confined
8
biochar-confined nano-cuo/cu
8
rapid selective
8
selective adsorption
8
adsorption iodide
8
nano-cuo/cu c-cu
8

Similar Publications

Ultrarapid and efficient sequestration of iodate and iodide with a pillar[5]arene-based cationic polymeric network.

Chem Commun (Camb)

January 2025

Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu, 610064, China.

A macrocycle-based approach to the construction of a cationic polymeric network with pillar[5]arene as the node for efficient sequestration of hazardous IO and I is presented. Ultrafast kinetics ( 4 min) were achieved along with excellent adsorption capacities for both IO (456 mg g) and I (370 mg g), good selectivity, and outstanding reusability. This work showcases the merits of pillar[5]arene as nodes in cationic adsorption materials in the removal of anionic iodine species.

View Article and Find Full Text PDF

The primary approach to assessing monitored natural attenuation (MNA) is currently based on a conceptual model utilizing the total contaminant concentrations, assuming a single aqueous species. However, many contaminants, such as metals and radionuclide - including iodine, can exist in multiple species that behave chemically differently in the environment and can exist simultaneously. For example, radioiodine often occurs concurrently as three major aqueous species: iodide (I), iodate (IO), and organo-I, which undergo distinct attenuation pathways and exhibit markedly different mobility and geochemical behavior.

View Article and Find Full Text PDF

In this study, novel anion photo-responsive supramolecular hydrogels based on cysteine-silver sol (CSS) and iodate anions (IO) were prepared. The peculiarities of the self-assembly process of gel formation in the dark and under visible-light exposure were studied using a complex of modern physico-chemical methods of analysis, including viscosimetry, UV spectroscopy, dynamic light scattering, electrophoretic light scattering, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. In the dark phase, the formation of weak snot-like gels takes place in a quite narrow IO ion concentration range.

View Article and Find Full Text PDF

Enhanced iodinated disinfection byproducts formation in iodide/iodate-containing water undergoing UV-chloramine sequential disinfection: Machine learning-aided identification of reaction mechanisms.

Water Res

March 2025

State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China. Electronic address:

Restricted to the complex nature of dissolved organic matter (DOM) in various aquatic environments, the mechanisms of enhanced iodinated disinfection byproducts (I-DBPs) formation in water containing both I and IO (designated as I/IO in this study) during the ultraviolet (UV)-chloramine sequential disinfection process remains unclear. In this study, four machine learning (ML) models were established to predict I-DBP formation by using DOM and disinfection features as input variables. Extreme gradient boosting (XGB) algorithm outperformed the others in model development using synthetic waters and in cross-dataset generalization of surface waters.

View Article and Find Full Text PDF

Iodine is a redox-sensitive element and a potential oxidant for the respiration of organic matter. Here we report the spatial variation of dissolved iodine in the Bay of Bengal (BoB) oxygen minimum zone (OMZ) and compare it with that of the Arabian Sea (AS). Subsurface iodide peaks were observed in the upper boundary of the OMZ, representing 20 to 70 % of the total iodine budget in the BoB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!