Recently, the nonlinear optical response of graphene has been widely investigated, as has the integration of this 2D material onto dielectric waveguides so as to enhance the various nonlinear phenomena that underpin all-optical signal processing applications at telecom wavelengths. However, a great disparity continues to exist from these experimental reports, depending on the used conditions or the hybrid devices under test. Most importantly, hybrid graphene-based waveguides were tested under relatively low powers, and/or combined with waveguide materials that already exhibited a nonnegligible nonlinear contribution, thereby limiting the practical use of graphene for nonlinear applications. Here, we experimentally investigate the nonlinear response of Si3N4 waveguides that are locally covered by submillimeter-long graphene patches by means of pulsed degenerate four-wave mixing at telecom wavelength under 7 W peak powers. Our measurements and comparison with simulations allow us to estimate a local change of the nonlinearity sign as well as a moderate increase of the nonlinear waveguide parameter (∼-10 mW) provided by graphene. Our analysis also clarifies the tradeoff associated with the loss penalty and nonlinear benefit afforded by graphene patches integrated onto passive photonic circuits, thereby providing some guidelines for the design of hybrid integrated nonlinear devices, coated with graphene, or, more generally, any other 2D material.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920485 | PMC |
http://dx.doi.org/10.3390/nano13030451 | DOI Listing |
Light Sci Appl
January 2025
Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland.
Coherent broadband light generation has attracted massive attention due to its numerous applications ranging from metrology, sensing, and imaging to communication. In general, spectral broadening is realized via third-order and higher-order nonlinear optical processes (e.g.
View Article and Find Full Text PDFWe report photon-phonon dressing quantization dependency on polarization. Destructive dressing polarization quantization is exhibited in fluorescence (FL) for narrowband signals, while constructive dominant dressing quantization is exhibited in fluorescence (FL) for broadband signals due to phase perturbation. Furthermore, constructive polarization quantization results due to coexistence of generation and dressing effects in strong and competitive Rabi frequency.
View Article and Find Full Text PDFAsia Pac J Public Health
December 2024
The Tokyo Foundation for Policy Research, Tokyo, Japan.
Few longitudinal studies have examined the impact of the COVID-19 pandemic on personal behaviors. This study investigated changes in four social behaviors among the Japanese public during and after the COVID-19 pandemic, using four-wave longitudinal data (2020-2023) from the Japan COVID-19 and Society Internet Survey (JACSIS). In total, 8622 respondents continuously participated in the surveys.
View Article and Find Full Text PDFMultiple coherent radiations are achieved in a water-3-aminopropanol (3AP) mixed solution through cascaded four-wave mixing (C-FWM) and cascaded Stokes (C-Stokes) processes, both driven by stimulated Raman scattering (SRS) in this work. The O-H vibration peak from water is replaced by the emergence of the -NH symmetric stretching Raman peaks from 3AP, with intensity approaching that of the -CH symmetric stretching peak. The dual-wavelength SRS signals for the -NH and -CH stretching vibrations have a relatively small frequency interval of about 400 cm (16 nm).
View Article and Find Full Text PDFSci Adv
December 2024
Department of Electronic Engineering, Tsinghua University, Frontier Science Center for Quantum Information, Beijing National Research Center for Information Science and Technology (BNRist), Beijing 100084, China.
Leveraging the unique properties of quantum entanglement, quantum entanglement distribution networks support multiple quantum information applications and are essential to the development of quantum networks. However, practical implementation poses fundamental challenges to network scalability and flexibility. Here, we propose a reconfigurable entanglement distribution network scheme based on tunable multipump excitation of a spontaneous four-wave mixing (SFWM) source and a time-sharing method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!