A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In Situ Photodeposition of Cobalt Phosphate (CoHPO) on CdInS Photocatalyst for Accelerated Hole Extraction and Improved Hydrogen Evolution. | LitMetric

The ternary metal sulfide CdInS (CIS) has great application potential in solar-to-hydrogen conversion due to its suitable band gap, good stability and low cost. However, the photocatalytic hydrogen (H) evolution performance of CIS is severely limited by the rapid electron-hole recombination originating from the slow photogenerated hole transfer kinetics. Herein, by simply depositing cobalt phosphate (CoHPO, noted as Co-Pi), a non-precious co-catalyst, an efficient pathway for accelerating the hole transfer process and subsequently promoting the H evolution reaction (HER) activity of CIS nanosheets is developed. X-ray photoelectron spectroscopy (XPS) reveals that the Co atoms of Co-Pi preferentially combine with the unsaturated S atoms of CIS to form Co-S bonds, which act as channels for fast hole extraction from CIS to Co-Pi. Electron paramagnetic resonance (EPR) and time-resolved photoluminescence (TRPL) showed that the introduction of Co-Pi on ultrathin CIS surface not only increases the probability of photogenerated holes arriving the catalyst surface, but also prolongs the charge carrier's lifetime by reducing the recombination of electrons and holes. Therefore, Co-Pi/CIS exhibits a satisfactory photocatalytic H evolution rate of 7.28 mmol g h under visible light, which is superior to the pristine CIS (2.62 mmol g h) and Pt modified CIS (3.73 mmol g h).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921930PMC
http://dx.doi.org/10.3390/nano13030420DOI Listing

Publication Analysis

Top Keywords

cobalt phosphate
8
phosphate cohpo
8
hole extraction
8
hydrogen evolution
8
cis
8
hole transfer
8
situ photodeposition
4
photodeposition cobalt
4
cohpo cdins
4
cdins photocatalyst
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!