Study on the Adsorption Behavior of Polymeric Dispersants to S-ZnF Particles during Grinding Process.

Materials (Basel)

Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China.

Published: February 2023

Three sodium polyacrylate copolymers PD0x (Poly acrylic acid-co-sodium 4-vinylbenzenesulfonate or PD01; Poly acrylic acid-co-sodium 4-vinylbenzenesulfonate-co-hydroxyethyl methacrylate or PD02 and Poly methyl methacrylate-co-acrylic acid-co-sodium 4-vinylbenzenesulfonate-co-hydroxyethyl methacrylate or PD03) were synthesized as water-based dispersants for grinding red-brown pigment ZnFeCrO particles prepared by the solid phase method (S-ZnF). The particle size distribution, viscosity of suspensions, and adsorption capacity of dispersants were explored by laser particle size analysis, viscometer, and thermogravimetry (TG), respectively. The application of 2 wt.% dispersant PD02 in the S-ZnF suspension ground for 90 min can deliver a finer product with the narrower particle size distribution. The added dispersant PD02 in the grinding process of the S-ZnF particles exhibits a suitable viscosity of the suspension and generates more hydrogen bonds on the S-ZnF particle surface. The sulfonic acid groups (SO) and carboxylic acid groups (-COO) in the dispersant PD02 can also provide a strong charge density, which is favorable for the dispersion and grinding of the S-ZnF particles in the suspensions. Furthermore, the adsorption behavior of polymeric dispersant PD02 adsorbed on the S-ZnF particles surface was simulated and analyzed by adsorption thermodynamic models and adsorption kinetic models. It is indicated that the adsorption thermodynamic behavior of dispersant PD02 adsorbed on the S-ZnF particles surface follows the Langmuir model, and the adsorption process is endothermic and a random process with increased confusion during the grinding process. In addition, the adsorption kinetics of dispersant PD02 adsorbed on the S-ZnF particles surface are more in line with the pseudo-first-order kinetic models. Therefore, the adsorption process of dispersant PD02 on the S-ZnF particles surface can be considered as a single-surface adsorption process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920609PMC
http://dx.doi.org/10.3390/ma16031287DOI Listing

Publication Analysis

Top Keywords

s-znf particles
28
dispersant pd02
28
particles surface
16
grinding process
12
particle size
12
pd02 adsorbed
12
adsorbed s-znf
12
adsorption process
12
s-znf
10
adsorption
9

Similar Publications

Study on the Adsorption Behavior of Polymeric Dispersants to S-ZnF Particles during Grinding Process.

Materials (Basel)

February 2023

Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China.

Three sodium polyacrylate copolymers PD0x (Poly acrylic acid-co-sodium 4-vinylbenzenesulfonate or PD01; Poly acrylic acid-co-sodium 4-vinylbenzenesulfonate-co-hydroxyethyl methacrylate or PD02 and Poly methyl methacrylate-co-acrylic acid-co-sodium 4-vinylbenzenesulfonate-co-hydroxyethyl methacrylate or PD03) were synthesized as water-based dispersants for grinding red-brown pigment ZnFeCrO particles prepared by the solid phase method (S-ZnF). The particle size distribution, viscosity of suspensions, and adsorption capacity of dispersants were explored by laser particle size analysis, viscometer, and thermogravimetry (TG), respectively. The application of 2 wt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!