A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

2D Hierarchical NiMoO Nanosheets/Activated Carbon Nanocomposites for High Performance Supercapacitors: The Effect of Nickel to Molybdenum Ratios. | LitMetric

Supercapacitors have the potential to be used in a variety of fields, including electric vehicles, and a lot of research is focused on unique electrode materials to enhance capacitance and stability. Herein, we prepared nickel molybdate/activated carbon (AC) nanocomposites using a facile impregnation method that preserved the carbon surface area. In order to study how the nickel-to-molybdenum ratio affects the efficiency of the electrode, different ratios between Ni-Mo were prepared and tested as supercapacitor electrodes, namely in the following ratios: 1:1, 1:2, 1:3, 1:4, and 1:5. X-ray diffraction, X-ray photoelectron spectroscopy, FESEM, HRTEM, and BET devices were extensively used to analyze the structure of the nanocomposites. The structure of the prepared nickel molybdates was discovered to be 2D hierarchical nanosheets, which functionalized the carbon surface. Among all of the electrodes, the best molar ratio between Ni-Mo was found to be 1:3 NiMo3/AC reaching (541 F·g) of specific capacitance at a current density of 1 A·g, and 67 W·h·Kg of energy density at a power density of 487 W·Kg. Furthermore, after 4000 repetitive cycles at a large current density of 4 A·g, an amazing capacitance stability of 97.7% was maintained. This remarkable electrochemical activity for NiMo3/AC could be credited towards its 2D hierarchical structure, which has a huge surface area of 1703 m·g, high pore volume of 0.925 cm·g, and large particle size distribution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921724PMC
http://dx.doi.org/10.3390/ma16031264DOI Listing

Publication Analysis

Top Keywords

carbon nanocomposites
8
capacitance stability
8
prepared nickel
8
carbon surface
8
surface area
8
current density
8
density a·g
8
hierarchical nimoo
4
nimoo nanosheets/activated
4
carbon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!