Materials (Basel)
Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan.
Published: January 2023
Micro-shot peening under two Almen intensities was performed to increase the fatigue endurance limit of anodized AA 7075 alloy in T6 condition. Compressive residual stress (CRS) and a nano-grained structure were present in the outermost as-peened layer. Microcracks in the anodized layer obviously abbreviated the fatigue strength/life of the substrate. The endurance limit of the anodized AA 7075 was lowered to less than 200 MPa. By contrast, micro-shot peening increased the endurance limit of the anodized AA 7075 to above that of the substrate (about 300 MPa). Without anodization, the fatigue strength of the high peened (HP) specimen fluctuated; this was the result of high surface roughness of the specimen, as compared to that of the low peened (LP) one. Pickling before anodizing was found to erode the outermost peened layer, which caused a decrease in the positive effect of peening. After anodization, the HP sample had a greater fatigue strength/endurance limit than that of the LP one. The fracture appearance of an anodized fatigued sample showed an observable ring of brittle fracture. Fatigue cracks present in the brittle coating propagated directly into the substrate, significantly damaging the fatigue performance of the anodized sample. The CRS and the nano-grained structure beneath the anodized layer accounted for a noticeable increase in resistance to fatigue failure of the anodized micro-shot peened specimen.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9920401 | PMC |
http://dx.doi.org/10.3390/ma16031160 | DOI Listing |
Micromachines (Basel)
March 2023
Power Micro International Co., Limited, Kaohsiung 83051, Taiwan.
In order to increase the performance of tool or mold/die, there are a lot of micro features on the surface to provide special functions, such as anti-adhesion or lubrication. The MPB (Micro Particle Bombarding) process provides a powerful technology to enhance the surface quality without damaging the micro features. The effect of MPB parameters were investigated by bombarding the surface with extremely small particles (20~200 µm in diameter) at a high velocity and pressure to obtain a better surface integrity.
View Article and Find Full Text PDFMaterials (Basel)
January 2023
Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan.
Micro-shot peening under two Almen intensities was performed to increase the fatigue endurance limit of anodized AA 7075 alloy in T6 condition. Compressive residual stress (CRS) and a nano-grained structure were present in the outermost as-peened layer. Microcracks in the anodized layer obviously abbreviated the fatigue strength/life of the substrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.