AI Article Synopsis

  • - Transcatheter aortic valve implantation (TAVI) is the go-to treatment for patients with severe aortic stenosis who can't have surgery, and a study was done to assess changes in heart function following the procedure using echocardiography.
  • - The study involved 25 patients with a mean age of 83, and measurements of hemodynamic forces (HDFs) and left ventricular (LV) function showed significant improvements in HDF parameters post-TAVI.
  • - Despite these improvements in HDFs, conventional measures like global longitudinal strain and left ventricular ejection fraction did not change much, suggesting that HDF analysis might be more effective in predicting recovery of LV function post-TAVI.

Article Abstract

Transcatheter aortic valve implantation (TAVI) is the established first-line treatment for patient with severe aortic stenosis not suitable for surgery. Echocardiographic evaluation of hemodynamic forces (HDFs) is a growing field, holding the potential to early predict improvement in LV function. A prospective observational study was conducted. Transthoracic echocardiography was performed before and after TAVI. HDFs were analyzed along with traditional left ventricular (LV) function parameters. Twenty-five consecutive patients undergoing TAVI were enrolled: mean age 83 ± 5 years, 74.5% male, mean LV Ejection Fraction (LVEF) at baseline 57 ± 8%. Post-TAVI echocardiographic evaluation was performed 2.4 ± 1.06 days after the procedure. HDF amplitude parameters improved significantly after the procedure: LV Longitudinal Forces (LF) apex-base [mean difference (MD) 1.79%; 95% CI 1.07-2.5; -value < 0.001]; LV systolic LF apex-base (MD 2.6%; 95% CI 1.57-3.7; -value < 0.001); LV impulse (LVim) apex-base (MD 2.9%; 95% CI 1.48-4.3; -value < 0.001). Similarly, HDFs orientation parameters improved: LVLF angle (MD 1.5°; 95% CI 0.07-2.9; -value = 0.041); LVim angle (MD 2.16°; 95% CI 0.76-3.56; -value = 0.004). Conversely, global longitudinal strain and LVEF did not show any significant difference before and after the procedure. Echocardiographic analysis of HDFs could help differentiate patients with LV function recovery after TAVI from patients with persistent hemodynamic dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917967PMC
http://dx.doi.org/10.3390/jcm12031218DOI Listing

Publication Analysis

Top Keywords

hemodynamic forces
8
severe aortic
8
aortic stenosis
8
transcatheter aortic
8
aortic valve
8
valve implantation
8
echocardiographic evaluation
8
parameters improved
8
-value 0001
8
95%
5

Similar Publications

Identification and regulation of a novel leptin receptor-linked enhancer during zebrafish ventricle regeneration.

Life Sci

January 2025

TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China. Electronic address:

Aims: Vertebrates vary greatly in their abilities to regenerate injured hearts. Zebrafish possess a remarkable capacity for cardiac regeneration, making them an excellent model for regeneration research. Recent studies have reported the activation and underlying regulatory mechanisms of leptin b (lepb) and the leptin b-linked enhancer (LEN) in injured hearts.

View Article and Find Full Text PDF

Dynamic pathophysiological features of early primary blast lung injury: a novel functional incapacity pig model.

Eur J Trauma Emerg Surg

January 2025

Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, 400042, China.

Introduction: While there is evidence supporting the use of ultrasound for real-time monitoring of primary blast lung injury (PBLI), uncertainties remain regarding the timely detection of early PBLI and the limited data correlating it with commonly used clinical parameters. Our objective is to develop a functional incapacity model for PBLI that better addresses practical needs and to verify the early diagnostic effectiveness of lung ultrasound in identifying PBLI.

Methods: We selected six healthy male pigs to develop an animal model using a bio-shock tube (BST-I).

View Article and Find Full Text PDF

Objective: The complex mix of factors, including hemodynamic forces and wall remodeling mechanisms, that drive intracranial aneurysm growth is unclear. This study focuses on the specific regions within aneurysm walls where growth occurs and their relationship to the prevalent hemodynamic conditions to reveal critical mechanisms leading to enlargement.

Methods: The authors examined hemodynamic models of 67 longitudinally followed aneurysms, identifying 88 growth regions.

View Article and Find Full Text PDF

Left Ventricular Hemodynamic Forces Changes in Fabry Disease: A Cardiac Magnetic Resonance Study.

J Magn Reson Imaging

January 2025

Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Background: Hemodynamic force (HDF) from cardiac MRI can indicate subclinical myocardial dysfunction, and help identify early cardiac changes in patients with Fabry disease (FD). The hemodynamic change in FD patients remains unclear.

Purpose: To explore HDF changes in FD and the potential of HDF measurements as diagnostic markers indicating early cardiac changes in FD.

View Article and Find Full Text PDF

Background: Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) can induce accelerated regeneration of future liver remnant (FLR) and effectively reduce the occurrence of liver failure due to insufficient FLR after hepatectomy, thereby increasing the probability of radical resection for previously inoperable patients with liver cancer. However, the exact mechanism by which ALPPS accelerates liver regeneration remains elusive.

Methods: A review of the literature was performed utilizing MEDLINE/PubMed and Web of Science databases in March of 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!