AI Article Synopsis

  • Accurate detection of cerebral microbleeds (CMBs) using low-field MRI is being explored as a cost-effective alternative to traditional high-field MRI for evaluating neurological diseases.
  • A study involving 24 suspected stroke patients showed that low-field MRI at 0.55 T performed equally well as 1.5 T MRI in identifying CMBs, with both methods achieving 100% sensitivity and specificity.
  • Low-field MRI demonstrated better resolution and contrast in imaging quality, while high-field MRI had less noise, suggesting that both methods have their strengths, but low-field MRI could be a beneficial option for resource-limited settings.

Article Abstract

Purpose: Accurate detection of cerebral microbleeds (CMBs) on susceptibility-weighted (SWI) magnetic resonance imaging (MRI) is crucial for the characterization of many neurological diseases. Low-field MRI offers greater access at lower costs and lower infrastructural requirements, but also reduced susceptibility artifacts. We therefore evaluated the diagnostic performance for the detection of CMBs of a whole-body low-field MRI in a prospective cohort of suspected stroke patients compared to an established 1.5 T MRI.

Methods: A prospective scanner comparison was performed including 27 patients, of whom 3 patients were excluded because the time interval was >1 h between acquisition of the 1.5 T and 0.55 T MRI. All SWI sequences were assessed for the presence, number, and localization of CMBs by two neuroradiologists and additionally underwent a Likert rating with respect to image impression, resolution, noise, contrast, and diagnostic quality.

Results: A total of 24 patients with a mean age of 74 years were included (11 female). Both readers detected the same number and localization of microbleeds in all 24 datasets (sensitivity and specificity 100%; interreader reliability ϰ = 1), with CMBs only being observed in 12 patients. Likert ratings of the sequences at both field strengths regarding overall image quality and diagnostic quality did not reveal significant differences between the 0.55 T and 1.5 T sequences ( = 0.942; = 0.672). For resolution and contrast, the 0.55 T sequences were even significantly superior ( < 0.0001; < 0.0003), whereas the 1.5 T sequences were significantly superior ( < 0.0001) regarding noise.

Conclusion: Low-field MRI at 0.55 T may have similar accuracy as 1.5 T scanners for the detection of microbleeds and thus may have great potential as a resource-efficient alternative in the near future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917536PMC
http://dx.doi.org/10.3390/jcm12031179DOI Listing

Publication Analysis

Top Keywords

low-field mri
12
cerebral microbleeds
8
magnetic resonance
8
resonance imaging
8
number localization
8
055 sequences
8
sequences superior
8
superior 00001
8
mri
6
055
5

Similar Publications

The goal of this study was to determine how radiologists' rating of image quality when using 0.5T Magnetic Resonance Imaging (MRI) compares to Computed Tomography (CT) for visualization of pathology and evaluation of specific anatomic regions within the paranasal sinuses. 42 patients with clinical CT scans opted to have a 0.

View Article and Find Full Text PDF

T* relaxometry of fetal brain structures using low-field (0.55T) MRI.

Magn Reson Med

December 2024

Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.

Purpose: Human brain development during gestation is complex, as both structure and function are rapidly forming. Structural imaging methods using MRI are well developed to explore these changes, but functional imaging tools are lacking. Low-field MRI is a promising modality to bridge this gap.

View Article and Find Full Text PDF

In this study, a novel acid-induced heat-set soy protein hydrolysate (SPH) gel was successfully developed. The effects of protein (7 and 8 wt%) and glucono-δ-lactone (GDL, 4, 6, 8, and 10 wt%) concentrations on its aggregation and gelation behaviors were investigated by evaluating the structural, rheological, textural, and physical properties of the SPH gel. The structural properties revealed that GDL promoted the formation of SPH aggregates and gels, primarily via disulfide bonds and hydrophobic interactions, which were closely related to the unfolding of the protein structure, exposed hydrophobic groups, decreased protein solubility, and increased particle size and turbidity during the heating process.

View Article and Find Full Text PDF

Background: Low-field open magnetic resonance imaging (MRI) systems, typically operating at magnetic field strengths below 1 Tesla, has greatly expanded the accessibility of MRI technology to meet a wide range of patient needs. However, the inherent challenges of low-field MRI, such as limited signal-to-noise ratios and limited availability of dedicated radiofrequency (RF) coils, have prompted the need for innovative coil designs that can improve imaging quality and diagnostic capabilities. In this work, we introduce a multimodal axial array resonator and its implementation in a volume coil, or referred to as a coupled stack-up volume coil, to address these challenges in low-field open MRI.

View Article and Find Full Text PDF

Design and construction of gradient coils for an MRI-guided small animal radiation platform.

Heliyon

February 2024

Innovative Technology Of Radiotherapy Computations and Hardware (iTORCH) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, 75390, TX, USA.

Small animal radiation experiments use a dedicated hardware platform to deliver radiation to small animals to support pre-clinical radiobiological studies. Image guidance is critical to achieve experiment accuracy. MR-based image guidance became recently available in human radiation therapy by integrating an MR scanner with a medical linear accelerator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!