The cost of radiation treatment in 1985 at an Ontario regional cancer centre accruing 2500 new patients annually was examined. The radiation treatment department was equipped with three high-energy treatment machines, a treatment simulator and a treatment planning computer and was appropriately staffed. The total average annual cost of operating one high-energy treatment machine was $668,963. Salaries and employee benefits accounted for 78% of the costs. An average of 5439 radiation treatments were given annually with each treatment machine, at a cost $123 per treatment. The cost of a curative course of radiation treatment (average of 21 treatments) was $2583, and the cost of a palliative course (average of 7 treatments) was $861.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1267379 | PMC |
Med Phys
January 2025
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan.
Background: The use of iodinated contrast-enhancing agents in computed tomography (CT) improves the visualization of relevant structures for radiotherapy treatment planning (RTP). However, it can lead to dose calculation errors by incorrectly converting a CT number to electron density.
Purpose: This study aimed to propose an algorithm for deriving virtual non-contrast (VNC) electron density from dual-energy CT (DECT) data.
NMR Biomed
March 2025
Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland, Australia.
In this work, we introduce spatial and chemical saturation options for artefact reduction in magnetic resonance fingerprinting (MRF) and assess their impact on T and T mapping accuracy. An existing radial MRF pulse sequence was modified to enable spatial and chemical saturation. Phantom experiments were performed to demonstrate flow artefact reduction and evaluate the accuracy of the T and T maps.
View Article and Find Full Text PDFMed Phys
January 2025
Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, Canada.
Background: The treatment of glioblastomas (GBM) with radiation therapy is extremely challenging due to their invasive nature and high recurrence rate within normal brain tissue.
Purpose: In this work, we present a new metric called the tumour spread (TS) map, which utilizes diffusion tensor imaging (DTI) to predict the probable direction of tumour cells spread along fiber tracts. We hypothesized that the TS map could serve as a predictive tool for identifying patterns of likely recurrence in patients with GBM and, therefore, be used to modify the delivery of radiation treatment to pre-emptively target regions at high risk of tumour spread.
Eur J Med Res
January 2025
Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
Background: Histone H2B is highly expressed in many types of cancers and is involved in cancer development. H2B clustered histone 9 (H2BC9), a member of the H2B family, plays critical roles in gene expression regulation, chromosome structure, DNA repair stability, and cell cycle regulation. However, the diagnostic and prognostic value of H2BC9 in head and neck squamous cell carcinoma (HNSCC) remains unclear.
View Article and Find Full Text PDFIntroduction: Sarcomas are rare cancers originating from mesenchymal tissues, manifesting in diverse anatomical locations, but notably in connective tissue, muscles and the skeleton. Thoracic sarcomas present a unique diagnostic and surgical challenge attributable to their rarity and pathoanatomy. Standard practice currently comprises wide surgical excision, often accompanied by adjuvant chemotherapy and/or radiotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!