Plant height is an important and valuable agronomic trait associated with yield and resistance to abiotic and biotic stresses. Dwarfism has positive effects on plant development and field management, especially for tall monocotyledon banana ( spp.). However, several key genes and their regulation mechanism of controlling plant height during banana development are unclear. In the present study, the popular cultivar 'Brazilian banana' ('BX') and its dwarf mutant ('RK') were selected to identify plant height-related genes by comparing the phenotypic and transcriptomic data. Banana seedlings with 3-4 leaves were planted in the greenhouse and field. We found that the third and fourth weeks are the key period of plant height development of the selected cultivars. A total of 4563 and 10507 differentially expressed genes (DEGs) were identified in the third and fourth weeks, respectively. Twenty modules were produced by the weighted gene co-expression network analysis (WGCNA). Eight modules were positively correlated with the plant height, and twelve other modules were negatively correlated. Combining with the analysis of DEGs and WGCNA, 13 genes in the signaling pathway of gibberellic acid (GA) and 7 genes in the signaling pathway of indole acetic acid (IAA) were identified. Hub genes related to plant height development were obtained in light of the significantly different expression levels (|log2FC| ≥ 1) at the critical stages. Moreover, GA3 treatment significantly induced the transcription expressions of the selected candidate genes, suggesting that GA signaling could play a key role in plant height development of banana. It provides an important gene resource for the regulation mechanism of banana plant development and assisted breeding of ideal plant architecture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917265 | PMC |
http://dx.doi.org/10.3390/ijms24032628 | DOI Listing |
BMC Genomics
December 2024
Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
Background: Rice, as one of the most important staple crops, its genetic improvement plays a crucial role in agricultural production and food security. Although extensive research has utilized single nucleotide polymorphisms (SNPs) data to explore the genetic basis of important agronomic traits in rice improvement, reports on the role of other types of variations, such as insertions and deletions (INDELs), are still limited.
Results: In this study, we extracted INDELs from resequencing data of 148 rice improved varieties.
Sci Rep
December 2024
Bioinformatics Laboratory, Research & Developmental Cell, Parul University, Vadodara, 391760, Gujarat, India.
Finger millet blast caused by Pyricularia grisea hinders crop's growth and is a serious threat to economic yield. It can lead to massive yield losses i.e.
View Article and Find Full Text PDFSci Rep
December 2024
Agrotechnology Division, Council of Scientific and Industrial Research - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176 061, India.
Balanced plant nutrition and optimal micro-climate are critical for achieving higher production sustainably. Substituting mineral fertilizers with organic amendments under water-conserving strategies like mulch can enhance the quality and yield and improve soil health. Therefore, a two-year study was conducted to examine the synergistic effects of mulch and reducing inorganic fertilizers and partially substituting organic amendments on essential oil (EO) yield and its composition, and soil properties in Salvia sclarea, an industrially important crop.
View Article and Find Full Text PDFSci Rep
December 2024
Limagrain Brazil S.A., Jataí, Goiás, Brazil.
This study investigates the effectiveness of high-throughput phenotyping (HTP) using RGB images from unmanned aerial vehicles (UAVs) to assess vegetation indices (VIs) in different soybean pure lines. The VIs were accessed at various stages of crop development and correlated with agronomic performance traits. The field research was conducted in the experimental area of the Mato Grosso do Sul Foundation, Brazil, with 60 soybean pure lines.
View Article and Find Full Text PDFSci Rep
December 2024
Institute for Forest Resources and Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China.
This study aims to explore the low phosphorus (P) tolerance of saplings from different Gleditsia sinensis Lam. families. It also seeks to screen for Gleditsia sinensis families with strong low P tolerance and identify key indicators for evaluating their tolerance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!