ATP-binding cassette (ABC) transporters comprise a large superfamily of primary active transporters, which are integral membrane proteins that couple energy to the uphill vectorial transport of substrates across cellular membranes, with concomitant hydrolysis of ATP. ABC transporters are found in all living organisms, coordinating mostly import in prokaryotes and export in eukaryotes. Unlike the highly conserved nucleotide binding domains (NBDs), sequence conservation in the transmembrane domains (TMDs) is low, with their divergent nature likely reflecting a need to accommodate a wide range of substrate types in terms of mass and polarity. An explosion in high resolution structural analysis over the past decade and a half has produced a wealth of structural information for ABCs. Based on the structures, a general mechanism for ABC transporters has been proposed, known as the Switch or Alternating Access Model, which holds that the NBDs are widely separated, with the TMDs and NBDs together forming an intracellular-facing inverted "V" shape. Binding of two ATPs and the substrate to the inward-facing conformation induces a transition to an outward conformation. Despite this apparent progress, certainty around the transport mechanism for any given ABC remains elusive. How substrate binding and transport is coupled to ATP binding and hydrolysis is not known, and there is a large body of biochemical and biophysical data that is at odds with the widely separated NBDs being a functional physiological state. An alternative Constant Contact model has been proposed in which the two NBSs operate 180 degrees out of phase with respect to ATP hydrolysis, with the NBDs remaining in close proximity throughout the transport cycle and operating in an asymmetric allosteric manner. The two models are discussed in the light of recent nuclear magnetic resonance and hydrogen-deuterium exchange mass spectrometry analyses of three ABC exporters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917156PMC
http://dx.doi.org/10.3390/ijms24032624DOI Listing

Publication Analysis

Top Keywords

abc transporters
12
mechanism abc
8
abc
6
nbds
5
switch reciprocating
4
reciprocating models
4
models function
4
function abc
4
abc multidrug
4
multidrug exporters
4

Similar Publications

Regarding flotillin knockdown, drug resistance is reversed in colorectal cancer (CRC) cell lines; this is associated with the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway, as our previous experimental results indicated. However, the exact mechanism underlying this pathway remains unclear. PI3K inhibitor and activator were added separately to clarify the role of the PI3K pathway in reversing drug resistance.

View Article and Find Full Text PDF

Ameliorative Effect of Glycyrrhizic Acid on Diosbulbin B-Induced Liver Injury and Its Mechanism.

Am J Chin Med

January 2025

Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1, Middle Section of Century Avenue, Xianyang 712046, P. R. China.

This study aimed to clarify the protective effect of Glycyrrhizic acid (GL) against Diosbulbin B (DB) - induced liver injury in mice and investigate its mechanisms of action. A liver injury DB was established in mice through the oral administration of DB for 15 days. At the same time, GL was administered to the mice for treatment.

View Article and Find Full Text PDF

Background: Type 2 diabetes (T2D) has been linked to changes in DNA methylation levels, which can, in turn, alter transcriptional activity. However, most studies for epigenome-wide associations between T2D and DNA methylation comes from cross-sectional design. Few large-scale investigations have explored these associations longitudinally over multiple time-points.

View Article and Find Full Text PDF

Inulin, a health-promoting dietary fiber, is efficiently metabolized by Weissella paramesenteroides YT175, a beneficial bacterium. The strain demonstrated a diauxic growth pattern within 48 h, reaching an optical density at 600 nm (OD) of approximately 1.5, accompanied by a significant decrease in pH to around 4.

View Article and Find Full Text PDF

Plants are often exposed to combined stress, e.g. heat and cadmium (Cd) stress under natural conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!