Noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP) are low-risk thyroid lesions most often characterised by RAS-type mutations. The histological diagnosis may be challenging, and even immunohistochemistry and molecular approaches have not yet provided conclusive solutions. This study characterises a set of NIFTPs by Matrix-Assisted Laser Desorption/Ionisation (MALDI)-Mass Spectrometry Imaging (MSI) to highlight the proteomic signatures capable of overcoming histological challenges. Archived formalin-fixed paraffin-embedded samples from 10 NIFTPs ( = 6 RAS-mutated and = 4 RAS-wild type) were trypsin-digested and analysed by MALDI-MSI, comparing their profiles to normal tissue and synchronous benign nodules. This allowed the definition of a four-peptide signature able to distinguish RAS-mutant from wild-type cases, the latter showing proteomic similarities to hyperplastic nodules. Moreover, among the differentially expressed signals, Peptidylprolyl Isomerase A (PPIA, 1505.8 ), which has already demonstrated a role in the development of cancer, was found overexpressed in NIFTP RAS-mutated nodules compared to wild-type lesions. These results underlined that high-throughput proteomic approaches may add a further level of biological comprehension for NIFTPs. In the future, thanks to the powerful single-cell detail achieved by new instruments, the complementary NGS-MALDI imaging sequence might be the correct methodological approach to confirm that the current NIFTP definition encompasses heterogeneous lesions that must be further characterised.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9916790 | PMC |
http://dx.doi.org/10.3390/ijms24032567 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!