The development of in vitro/in vivo translational methods and a clinical trial framework for synergistically acting drug combinations are needed to identify optimal therapeutic conditions with the most effective therapeutic strategies. We performed physiologically based pharmacokinetic-pharmacodynamic (PBPK/PD) modelling and virtual clinical trial simulations for siremadlin, trametinib, and their combination in a virtual representation of melanoma patients. In this study, we built PBPK/PD models based on data from in vitro absorption, distribution, metabolism, and excretion (ADME), and in vivo animals' pharmacokinetic-pharmacodynamic (PK/PD) and clinical data determined from the literature or estimated by the Simcyp simulator (version V21). The developed PBPK/PD models account for interactions between siremadlin and trametinib at the PK and PD levels. Interaction at the PK level was predicted at the absorption level based on findings from animal studies, whereas PD interaction was based on the in vitro cytotoxicity results. This approach, combined with virtual clinical trials, allowed for the estimation of PK/PD profiles, as well as melanoma patient characteristics in which this therapy may be noninferior to the dabrafenib and trametinib drug combination. PBPK/PD modelling, combined with virtual clinical trial simulation, can be a powerful tool that allows for proper estimation of the clinical effect of the above-mentioned anticancer drug combination based on the results of in vitro studies. This approach based on in vitro/in vivo extrapolation may help in the design of potential clinical trials using siremadlin and trametinib and provide a rationale for their use in patients with melanoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917191PMC
http://dx.doi.org/10.3390/ijms24032239DOI Listing

Publication Analysis

Top Keywords

vitro/in vivo
12
pbpk/pd modelling
12
clinical trial
12
virtual clinical
12
siremadlin trametinib
12
pbpk/pd models
8
based vitro
8
combined virtual
8
clinical trials
8
drug combination
8

Similar Publications

Design, evaluation, and in vitro-in vivo correlation of self-nanoemulsifying drug delivery systems to improve the oral absorption of exenatide.

J Control Release

January 2025

Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark; Bioneer A/S, Kogle Allé 2, Hørsholm 2970, Denmark. Electronic address:

The ability to predict the absorption of exenatide (Ex), a GLP-1 analogue, after oral dosing to rats in self-nanoemulsifying drug delivery systems (SNEDDS), using in vitro methods, was assessed. Ex was complexed with soybean phosphatidylcholine (SPC) prior to loading into SNEDDS. A design of experiments (DoE) approach was employed to develop SNEDDS incorporating medium-chain triglycerides (MCT), medium-chain mono- and diglycerides (MGDG), Kolliphor® RH40, and monoacyl phosphatidylcholine.

View Article and Find Full Text PDF

In 2019, diabetes mellitus affected 9.3% of the global population and accounted for one in nine adult deaths. Plant-based antioxidants neutralize harmful free radicals, mitigate oxidative stress, and significantly prevent diabetes and its complications.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) remain one of the leading causes of morbidity and mortality worldwide. In recent years, the potential role of dietary interventions in preventing and managing CVDs has gained significant attention. Among these dietary components, walnuts ( L.

View Article and Find Full Text PDF

Newcastle disease virus (NDV) has shown encouraging effectiveness in , , and in early clinical trials as a viro-immunotherapy for pancreatic cancer. Previously, NDV used in clinical trials was produced in embryonated chicken eggs; however, egg-produced viruses are known to be partly neutralized by the human complement system when administered intravenously. Here, an NDV variant (NDV F0) was generated for production in mammalian cells, without passage in eggs.

View Article and Find Full Text PDF

Cardiomyocytes (CMs) lost during ischemic cardiac injury cannot be replaced due to their limited proliferative capacity. Calcium is an important signal transducer that regulates key cellular processes, but its role in regulating CM proliferation is incompletely understood. Here we show a robust pathway for new calcium signaling-based cardiac regenerative strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!