Dihomo--Linolenic Acid (20:3n-6)-Metabolism, Derivatives, and Potential Significance in Chronic Inflammation.

Int J Mol Sci

Faculty of Health Sciences, Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.

Published: January 2023

Dihomo--linolenic acid (DGLA) has emerged as a significant molecule differentiating healthy and inflamed tissues. Its position at a pivotal point of metabolic pathways leading to anti-inflammatory derivatives or via arachidonic acid (ARA) to pro-inflammatory lipid mediators makes this n-6 polyunsaturated fatty acid (PUFA) an intriguing research subject. The balance of ARA to DGLA is probably a critical factor affecting inflammatory processes in the body. The aim of this narrative review was to examine the potential roles of DGLA and related n-6 PUFAs in inflammatory conditions, such as obesity-associated disorders, rheumatoid arthritis, atopic dermatitis, asthma, cancers, and diseases of the gastrointestinal tract. DGLA can be produced by cultured fungi or be obtained via endogenous conversion from -linolenic acid (GLA)-rich vegetable oils. Several disease states are characterized by abnormally low DGLA levels in the body, while others can feature elevated levels. A defect in the activity of ∆6-desaturase and/or ∆5-desaturase may be one factor in the initiation and progression of these conditions. The potential of GLA and DGLA administrations as curative or ameliorating therapies in inflammatory conditions and malignancies appears modest at best. Manipulations with ∆6- and ∆5-desaturase inhibitors or combinations of long-chain PUFA supplements with n-3 PUFAs could provide a way to modify the body's DGLA and ARA production and the concentrations of their pro- and anti-inflammatory mediators. However, clinical data remain scarce and further well-designed studies should be actively promoted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9916522PMC
http://dx.doi.org/10.3390/ijms24032116DOI Listing

Publication Analysis

Top Keywords

dihomo--linolenic acid
8
inflammatory conditions
8
dgla
7
acid 203n-6-metabolism
4
203n-6-metabolism derivatives
4
derivatives potential
4
potential significance
4
significance chronic
4
chronic inflammation
4
inflammation dihomo--linolenic
4

Similar Publications

Dietary Application of the Microalga Lobosphaera incisa P127 Reduces Severity of Intestinal Inflammation, Modulates Gut-Associated Gene Expression, and Microbiome in the Zebrafish Model of IBD.

Mol Nutr Food Res

March 2023

The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel.

Scope: Microalgae are an emerging nutritional resource of biomolecules with potential to alleviate gut inflammation. The study explores the anti-inflammatory and immunomodulatory potential of the microalga Lobosphaera incisa P127, which accumulates a rare omega-6 LC-PUFA dihomo-ɣ-linolenic acid (DGLA) under nitrogen starvation. The therapeutic potential of dietary supplementation with P127 is investigated in the zebrafish model of IBD (TNBS-induced colitis).

View Article and Find Full Text PDF

Oxylipins derived from n-3 fatty acids are suggested as the link between these fatty acids and reduced inflammation. The aim of the present study was to explore the effect of a randomized controlled cross-over intervention on oxylipin patterns in erythrocytes. Twenty-three women with rheumatoid arthritis completed 2 × 11-weeks exchanging one cooked meal per day, 5 days a week, for a meal including 75 g blue mussels (source for n-3 fatty acids) or 75 g meat.

View Article and Find Full Text PDF

Acute and long-term exercise differently modulate plasma levels of oxylipins, endocannabinoids, and their analogues in young sedentary adults: A sub-study and secondary analyses from the ACTIBATE randomized controlled-trial.

EBioMedicine

November 2022

PROmoting FITness and Health Through Physical Activity Research Group (PROFITH), Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain; Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Centre, Leiden, the Netherlands; Department of Education, Faculty of Education Sciences and SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almer.ía, Almer.ía, Spain. Electronic address:

Article Synopsis
  • This study investigates the role of fatty acid-derived lipid mediators like oxylipins and endocannabinoids in the body's inflammatory and immune responses to exercise stressors, using a randomized controlled trial with sedentary young adults.
  • Participants underwent acute endurance and resistance training, followed by a 24-week supervised exercise regimen, with their plasma levels of various lipid mediators measured before and after exercise using advanced mass spectrometry techniques.
  • Results showed significant increases (up to 50%) in specific omega-6 and omega-3-derived oxylipins and endocannabinoids after exercise, but the moderate-intensity exercise group experienced a reduction in some omega-6 oxylipins after the
View Article and Find Full Text PDF

Background: Unexplained heterogeneity in clinical trials has resulted in questions regarding the effectiveness of ɣ-linolenic acid (GLA)-containing botanical oil supplements. This heterogeneity may be explained by genetic variation within the fatty acid desaturase (FADS) gene cluster that is associated with circulating and tissue concentrations of arachidonic acid (ARA) and dihomo-ɣ-linolenic acid (DGLA), both of which may be synthesized from GLA and result in proinflammatory and anti-inflammatory metabolites, respectively.

Objectives: The objective of this study was to prospectively compare the capacity of a non-Hispanic white cohort, stratified by FADS genotype at the key single-nucleotide polymorphism (SNP) rs174537, to metabolize 18-carbon omega-6 (n-6) PUFAs in borage oil (BO) and soybean oil (SO) to GLA, DGLA, and ARA.

View Article and Find Full Text PDF

Plasma Oxidative Status in Preterm Infants Receiving LCPUFA Supplementation: A Pilot Study.

Nutrients

January 2020

Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 2, 28029 Madrid, Spain.

After birth, preterm infants are deficient in arachidonic acid (ARA), docosahexaenoic acid (DHA), and antioxidants, increasing their risk of oxidative stress-related pathologies. The principal aim was to evaluate if supplementation with long-chain polyunsaturated fatty acids (LCPUFAs) improves antioxidant defenses. In total, 21 preterm infants were supplemented with ARA and DHA in a 2:1 ratio (ARA:DHA-S) or with medium-chain triglycerides (MCT-S).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!