Plasma trimethylamine n-oxide (TMAO) concentration increases in responses to feeding TMAO, choline, phosphatidylcholine, L-carnitine, and betaine but it is unknown whether concentrations change following a mixed macronutrient tolerance test (MMTT) with limited amounts of TMAO precursors. In this proof-of-concept study, we provided healthy female and male adults ( = 97) ranging in age (18-65 years) and BMI (18-44 kg/m) a MMTT (60% fat, 25% sucrose; 42% of a standard 2000 kilo calorie diet) and recorded their metabolic response at fasting and at 30 min, 3 h, and 6 h postprandially. We quantified total exposure to TMAO (AUC-TMAO) and classified individuals by the blood draw at which they experienced their maximal TMAO concentration (TMAO-response groups). We related AUC-TMAO to the 16S rRNA microbiome, to two SNPs in the exons of the gene (rs2266782, G>A, p.Glu158Lys; and rs2266780, A>G, p.Glu308Gly), and to a priori plasma metabolites. We observed varying TMAO responses (timing and magnitude) and identified a sex by age interaction such that AUC-TMAO increased with age in females but not in males (-value = 0.0112). Few relationships between AUC-TMAO and the fecal microbiome and genotype were identified. We observed a strong correlation between AUC-TMAO and TNF-α that depended on TMAO-response group. These findings promote precision nutrition and have important ramifications for the eating behavior of adults who could benefit from reducing TMAO exposure, and for understanding factors that generate plasma TMAO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9917175 | PMC |
http://dx.doi.org/10.3390/ijms24032074 | DOI Listing |
Nutrients
January 2025
Department of Nutrition, University of Applied Sciences Münster (FH), 48149 Münster, Germany.
Rationale: The dietary components choline, betaine, and L-carnitine are converted by intestinal microbiota into the molecule trimethylamine (TMA). In the human liver, hepatic flavin-containing monooxygenase 3 oxidizes TMA to trimethylamine-N-oxide (TMAO). TMAO is considered a candidate marker for the risk of cardiovascular disease.
View Article and Find Full Text PDFPathogens
December 2024
Gastroenterology Department, Regional Clinical Hospital, Karaganda 100000, Kazakhstan.
Unlabelled: Crohn's disease (CD) is a multifactorial inflammatory bowel disease whose pathogenetic mechanisms are a field of ongoing study. Changes in the intestinal microbiome in CD may influence metabolite production and reflect the disease's severity. We investigate the relationship between trimethylamine N-oxide (TMAO) and lipopolysaccharide-binding protein (LPS) levels and changes in the gut microbiome in patients with CD of various degrees of activity.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver condition marked by excessive lipid accumulation in hepatic tissue. This disorder can lead to a range of pathological outcomes, including metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis. Despite extensive research, the molecular mechanisms driving MASLD initiation and progression remain incompletely understood.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Graduate Program in Biological Sciences-Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-630, Brazil.
Background: In patients with chronic kidney disease (CKD), trimethylamine n-oxide (TMAO) accumulation exacerbates inflammation and contributes to oxidative stress. These complications are putatively linked to the development of cardiovascular diseases. Despite the known associations, the variation in TMAO plasma levels across different CKD stages and dialysis modalities remains underexplored.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Wuxi School of Medicine, Jiangnan University, Wuxi, China.
Background: Prostate cancer was the fourth most diagnosed cancer worldwide in 2022. Radical treatments and androgen deprivation therapy benefit newly diagnosed patients but impact quality of life, often leading to castration-resistant prostate cancer. Short-term dietary changes significantly affect the gut microbiota, which differs markedly between prostate cancer patients and healthy individuals, impacting both cancer progression and treatment response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!