Applying Convolutional Neural Network to Predict Soil Erosion: A Case Study of Coastal Areas.

Int J Environ Res Public Health

School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266033, China.

Published: January 2023

The development of ecological restoration projects is unsatisfactory, and soil erosion is still a problem in ecologically restored areas. Traditional soil erosion studies are mostly based on satellite remote sensing data and traditional soil erosion models, which cannot accurately characterize the soil erosion conditions in ecological restoration areas (mainly plantation forests). This paper uses high-resolution unmanned aerial vehicle (UAV) images as the base data, which could improve the accuracy of the study. Considering that traditional soil erosion models cannot accurately express the complex relationships between erosion factors, this paper applies convolutional neural network (CNN) models to identify the soil erosion intensity in ecological restoration areas, which can solve the problem of nonlinear mapping of soil erosion. In this study area, compared with the traditional method, the accuracy of soil erosion identification by applying the CNN model improved by 25.57%, which is better than baseline methods. In addition, based on research results, this paper analyses the relationship between land use type, vegetation cover, and slope and soil erosion. This study makes five recommendations for the prevention and control of soil erosion in the ecological restoration area, which provides a scientific basis and decision reference for subsequent ecological restoration decisions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9915231PMC
http://dx.doi.org/10.3390/ijerph20032513DOI Listing

Publication Analysis

Top Keywords

soil erosion
44
ecological restoration
20
erosion
12
traditional soil
12
soil
11
convolutional neural
8
neural network
8
erosion models
8
models accurately
8
restoration areas
8

Similar Publications

Context: Tef [ ((Zucc.) Trotter)] is a remarkable indigenous crop, highly adaptive and resilient to erratic and extreme climatic and soil conditions. It is a major staple food in Ethiopia and is usually cultivated for household consumption and the generation of income.

View Article and Find Full Text PDF

Assessing the impact of climate change on water-related ecosystem services (ES) in Protected Areas (PAs) is essential for developing soil and water conservation strategies that promote sustainability and restore ES. However, the application of ES research in Protected Area (PA) management remains ambiguous and has notable shortcomings. This study primarily aimed to assess the SDR-InVEST (Sediment Delivery Ratio-Integrated Valuation of Ecosystem Services and Tradeoffs) model for estimating ES, including soil loss, sediment export, and sediment retention, under various climate change scenarios from 1997 to 2100 in the data-scarce region of the Bagh-e-Shadi Forest PA.

View Article and Find Full Text PDF

elevated concentrations of soil-bound heavy metals and magnetic particles in a typical urban plateau lake wetland, China.

Heliyon

January 2025

Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang, 550025, China.

Vegetation change significantly altered the hydrological processes and soil erosion within riparian ecosystems. It is unclear how change in managed vegetation types affect the geochemical behavior of heavy metals (HMs) and magnetic particles in karst riparian areas. Two soil depths of 0-20 cm and 20-40 cm were taken in alien species (), native species and in a typical urban plateau Lake wetland, Caohai lake, China.

View Article and Find Full Text PDF

Plant Adaptation and Soil Shear Strength: Unraveling the Drought Legacy in .

Plants (Basel)

January 2025

Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.

Climate change has led to an increasing frequency of droughts, potentially undermining soil stability. In such a changing environment, the shallow reinforcement effect of plant roots often fails to meet expectations. This study aims to explore whether this is associated with the alteration of plant traits as a response to environmental change.

View Article and Find Full Text PDF

Civil and geotechnical researchers are searching for economical alternatives to replace traditional soil stabilizers such as cement, which have negative impacts on the environment. Chitosan biopolymer has shown its capacity to efficiently minimize soil erosion, reduce hydraulic conductivity, and adsorb heavy metals in soil that is contaminated. This research used unconfined compression strength (UCS) to investigate the impact of chitosan content, long-term strength assessment, acid concentration, and temperature on the improvement of soil strength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!