AI Article Synopsis

  • Firefighters are exposed to high noise levels from equipment and vehicles, leading to potential hearing loss.
  • The study measured noise exposure using Apple Watches worn by 15 firefighters and 25 non-firefighter controls in South Florida during their shifts.
  • Results showed that firefighters experienced significantly higher noise levels and exposure time above the recommended limit, with minimal use of hearing protection.

Article Abstract

Occupational noise exposure and hearing loss are prominent in the fire service. Firefighters are routinely exposed to hazardous levels of noise arising from the tools and equipment they use, from sirens and alarm tones to the emergency response vehicles they drive. The present study utilized the Apple Watch to continuously measure environmental noise levels for on-duty firefighters. Participants included 15 firefighters from the metropolitan South Florida area, and 25 adult non-firefighter control subjects. Firefighters were recruited from a variety of roles across two stations to ensure noise exposure profiles were appropriately representative of exposures in the fire service. All participants wore an Apple Watch for up to three separate 24 h shifts and completed a post-shift survey self-reporting on perceived exposures over the 24 h study period. Cumulative exposures were calculated for each shift and noise dose was calculated relative to the NIOSH recommended exposure limit of 85 dBA as an 8 h time-weighted average. The maximum dBA recorded on the Apple Watches was statistically significant between groups, with firefighters experiencing a median of 87.79 dBA and controls a median of 77.27 dBA. Estimated Exposure Time at 85 dBA (EET-85) values were significantly higher for firefighters when compared to controls: 3.97 h (range: 1.20-14.7 h) versus 0.42 h (range: 0.05-8.21 h). Only 2 of 16 firefighters reported the use of hearing protection devices during their shifts. Overall, our results highlight the utility of a commonly used personal device to quantify noise exposure in an occupationally at-risk group.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9915343PMC
http://dx.doi.org/10.3390/ijerph20032315DOI Listing

Publication Analysis

Top Keywords

noise exposure
16
apple watch
12
occupational noise
8
firefighters
8
fire service
8
noise
7
exposure
6
dba
5
monitoring occupational
4
exposure firefighters
4

Similar Publications

This study presents a web application for predicting cardiovascular disease (CVD) and hypertension (HTN) among mine workers using machine learning (ML) techniques. The dataset, collected from 699 participants at the Gol-Gohar mine in Iran between 2016 and 2020, includes demographic, occupational, lifestyle, and medical information. After preprocessing and feature engineering, the Random Forest algorithm was identified as the best-performing model, achieving 99% accuracy for HTN prediction and 97% for CVD, outperforming other algorithms such as Logistic Regression and Support Vector Machines.

View Article and Find Full Text PDF

Occupational exposures are generally complex, workers are exposed with more than one hazardous agent in work environment. Combined exposure to noise and benzene is common in occupational environments. Sub-acute exposure to benzene vapors can induce oxidative stress in serum.

View Article and Find Full Text PDF

Exposure to green space, nighttime light, air pollution, and noise and cardiovascular disease risk: a prospective cohort study.

Environ Pollut

December 2024

Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China. Electronic address:

Current literature lacks information regarding impacts of green spaces on susceptibility to cardiovascular disease (CVD) related to harmful environmental exposures. The UK Biobank cohort study was utilized to investigate whether green spaces can mitigate risks associated with air pollutants, nighttime light, noise, and traffic intensity. Latent Profile Analysis was performed on green spaces and adverse environmental exposures in order to assess individual level exposure.

View Article and Find Full Text PDF

Longitudinal associations between air pollution and incident dementia as mediated by MRI-measured brain volumes in the UK Biobank.

Environ Int

December 2024

MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; National Institute for Health Research Health Protection Research Unit in Chemical and Radiation Threats and Hazards, School of Public Health, Imperial College London, UK. Electronic address:

Background: Although there is increasing evidence that environmental exposures are associated with the risk of neurodegenerative conditions, there is still limited mechanistic evidence evaluating potential mediators in human populations.

Methods: UK Biobank is a large long-term study of 500,000 adults enrolled from 2006 to 2010 age 40-69 years. ICD-10 classified reports of dementia cases up to 2022 (Alzheimer's disease, vascular dementia, dementia in other classified diseases, and unspecified dementia) were identified from health record linkage.

View Article and Find Full Text PDF

Environmental noise pollution is one of the biggest concerns and the most important challenges in urban areas. Evidence from epidemiological studies shows that acoustic pollution can impact human health, and the effects may be stronger in susceptible and sensitive individuals. The objective of the study was to determine the individual exposure to road transport noise for preschool children in the residential environment and to assess its impact on children's psychological health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!