Objective: The oral microbiota is a very complex and dynamic microbial ecosystem. Alterations of its balance can result in oral and systemic diseases. We aimed to characterize the microbiota in particular niches of the oral cavity in adult type 1 diabetes patients treated with continuous infusion of insulin with insulin pump (IP). In addition, we aimed to determine optimal sites of oral microbiota sampling in studies of large research groups of patients with DM I.

Design: In this pilot study, we sampled the buccal and soft palate mucosa, tongue, palatal and buccal dental surfaces and gingival pockets of adult DM I patients treated with IP.

Results: In total, 23 patients were recruited. The oral microbiota was dominated by and , with a low incidence of cariogenic and , as well as periodontal pathogens such as . There were significant differences in overall CFU counts of all strains, Gram-positive, , and strains between mucosal and dental surface sites. The overall CFU counts of all strains and Gram-positive strains were higher in dental sites vs. mucosal sites (both < 0.001). CFU counts of S. oralis were significantly higher in dental sites vs. gingival pocket sites ( = 0.013). Candida species were rare. The mucosal sites on the buccae presented lower diversity and bacterial counts.

Conclusions: In the study group of adult DM I patients treated with IP, the microbiota in particular niches of the oral cavity was significantly different. Three distinct and optimally appropriate sampling sites for oral microflora were identified: buccal and palatal mucosa, dental surface and gingival pockets. The results of this study may be the basis for further studies of large groups of patients with DM I.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914992PMC
http://dx.doi.org/10.3390/ijerph20032252DOI Listing

Publication Analysis

Top Keywords

oral microbiota
12
patients treated
12
cfu counts
12
oral
9
pilot study
8
type diabetes
8
insulin pump
8
microbiota niches
8
niches oral
8
oral cavity
8

Similar Publications

Introduction The use of antibiotics such as oral clindamycin has been effective in treating bacterial infections. However, this medication often comes with significant side effects, particularly those affecting the gastrointestinal (GI) system. This study aims to evaluate the impact of different doses of clindamycin on GI health, specifically examining side effects like stomach upset, diarrhea duration, stomach pain, and recovery time.

View Article and Find Full Text PDF

Characteristics of gut microbiota profiles in Asian elephants (Elephas maximus) with gastrointestinal disorders.

Sci Rep

January 2025

Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.

Colic and diarrhea are common gastrointestinal (GI) disorders in captive Asian elephants, which can severely impact health and lead to mortality. Gut dysbiosis, indicated by alterations in gut microbiome composition, can be observed in individuals with GI disorders. However, changes in gut microbial profiles of elephants with GI disorders have never been investigated.

View Article and Find Full Text PDF

Sepsis is a major cause of morbidity and mortality, but our understanding of the mechanisms underlying survival or susceptibility is limited. Here, as pathogens often subvert host defence mechanisms, we hypothesized that this might influence the outcome of sepsis. We used microbiota analysis, faecal microbiota transplantation, antibiotic treatment and caecal metabolite analysis to show that gut-microbiota-derived tryptophan metabolites including indoles increased host survival in a mouse model of Serratia marcescens sepsis.

View Article and Find Full Text PDF

Influence of selected dosages of plastic microparticles on the porcine fecal microbiome.

Sci Rep

January 2025

Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland.

Studies conducted so far have shown that nano- and microplastic may disturb the intestinal microenvironment by interacting with the intestinal epithelium and the gut microbiota. Depending on the research model used, the effect on the microbiome is different-an increase or decrease in selected taxa resulting in the development of dysbiosis. Dysbiosis may be associated with intestinal inflammation, development of mental disorders or diabetes.

View Article and Find Full Text PDF

Oral antibiotic treatment is well known to be one of the main factors affecting gut microbiota composition by altering bacterial diversity. It decreases the abundance of butyrate-producing bacteria such as Lachnospiraceae and Ruminococcaceae, while increasing abundance of Enterobacteriaceae. The recovery time of commensal bacteria post-antibiotic treatment varies among individuals, and often, complete recovery is not achieved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!