The objective of this study was to characterize radon concentrations registered in the Radiological Surveillance Network of the Basque country in relation to local meteorological parameters, and to determine its behaviour under heatwave events. For this purpose, radon measurements and meteorological parameters from June 2012 to June 2015 were analysed at two sites, Bilbao and Vitoria (northern Spain), in a region characterized by complex orography, causing large temporal and spatial variability in meteorological conditions. Yearly, seasonal, and diurnal cycle differences and similarities were investigated at both sites. The temporal evolution of radon concentration was analysed at both sites during the two heatwave periods officially identified by the State Meteorological Agency (8-11 August 2012 and 17-23 August 2012). The analysis revealed two different patterns of radon concentrations, in terms of both time and intensity, under this synoptic pattern, making it also possible to identify regional transport channels of radon concentrations between the two sites. This set of results evidences the adequate position of both stations to represent the spatial and temporal evolution of radiological variables continuously in this region.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9915027 | PMC |
http://dx.doi.org/10.3390/ijerph20032105 | DOI Listing |
Toxics
January 2025
School of Nuclear Science and Technology, University of South China, Hengyang 421001, China.
In different measurement tasks, the duration allocated for radon progeny concentration measurement varies, and the requirements for measurement precision also differ. To accommodate the needs of various radon progeny concentration measurement tasks, this study takes the error in radon progeny concentration measurement as the optimization goal and the time points of the three-stage method as the optimization target, establishing an optimized three-stage method for radon progeny concentration measurement. The optimization algorithm allocates the three time periods under any total measurement time requirement, ensuring the highest measurement precision.
View Article and Find Full Text PDFRadiat Prot Dosimetry
January 2025
Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada.
This study assesses the activity concentrations of the radionuclides 238U, 232Th, and 40K in soil samples collected from Wolaita Sodo town, located in the Southern Nations, Nationalities, and Peoples' (SNNP) Region, Ethiopia. A gamma-ray spectrometer equipped with a NaI(Tl) detector was used for the measurements. The concentrations of 238U, 232Th, and 40K varied from 3.
View Article and Find Full Text PDFEJNMMI Phys
January 2025
Department for Radiation Protection and Medical Physics, Hannover Medical School, Carl-Neuberg- Str. 1, 30625, Hannover, Germany.
Background: Treatment with Ra-223 dichloride is approved for the therapy of castration resistant prostate cancer (CRPC) with symptomatic bone metastases and no known visceral metastases in Europe since 2013, and Ra-223 is under discussion for labelling other molecules and nanoparticles. The direct progeny of Ra-223 is Rn-219, also known as actinon, a radioactive noble gas with a half-life of 3.98 s.
View Article and Find Full Text PDFRadiat Environ Biophys
December 2024
Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa, ON, K1A 1C1, Canada.
The Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM) have been developed to manage radiation doses received in workplaces involving NORM, such as mineral extraction and processing, oil and gas production, metal recycling or water treatment facilities. This management strategy works well for most naturally occurring radioactive materials in workplaces, with the exception of radon. Radon is a naturally occurring radioactive gas generated by the decay of uranium-bearing minerals in rocks and soils.
View Article and Find Full Text PDFAppl Radiat Isot
March 2025
School of Applied Mathematics and Informatics, University of Osijek, Trg Ljudevita Gaja 6, Osijek, Croatia.
The national radon surveys in Montenegro revealed that the highest annual average radon concentrations (C) in ground floors of dwellings and schools were found in a rural region characterized as a typical high-karst area. In this region, spanning approximately 800 km, C values in 9 houses and 16 schools ranged from 219 to 2494 Bq/m, with AM = 977 Bq/m. To investigate the causes of these elevated indoor radon concentrations, the following parameters were measured near the 25 surveyed buildings: soil humidity, electrical conductivity, pH, activity concentrations of Ra, U, U, Th and K, radon concentration in soil gas (c), soil permeability for radon gas (k), and gamma dose rate in the air.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!