A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analysis of Home Healthcare Practice to Improve Service Quality: Case Study of Megacity Istanbul. | LitMetric

Analysis of Home Healthcare Practice to Improve Service Quality: Case Study of Megacity Istanbul.

Healthcare (Basel)

Department of Industrial Engineering, Istanbul Commerce University, Kucukyali, Istanbul 34445, Turkey.

Published: January 2023

Home healthcare services are public or private service that aims to provide health services at home to socially disadvantaged, sick, needy, disabled, and elderly individuals. This study aims to increase the quality of home healthcare practice by analyzing the factors affecting it. In Megacity Istanbul, data from 1707 patients were used by considering 14 different input variables affecting home healthcare practice. The demographic, geographic, and living conditions of patients and healthcare professionals who take an active role in home healthcare practice constituted the central theme of the input parameters of this study. The regression method was used to look at the factors that affect the length of time a patient needs home healthcare, which is the study's output variable. This article provides short planning times and flexible solutions for home healthcare practice by showing how to avoid planning patient healthcare applications by hand using methods that were developed for home health services. In addition, in this research, the AB, RF, GB, and NN algorithms, which are among the machine learning algorithms, were developed using patient and personnel data with known input parameters to make home healthcare application planning correct. These algorithms' accuracy and error margins were calculated, and the algorithms' results were compared. For the prediction data, the AB model showed the best performance, and the R value of this algorithm was computed as 0.903. The margins of error for this algorithm were found to be 0.136, 0.018, and 0.043 for the RMSE, MSE, and MAE, respectively. This article provides short planning times and flexible solutions in home healthcare practice by avoiding manual patient healthcare application planning with the methods developed in the context of home health services.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914508PMC
http://dx.doi.org/10.3390/healthcare11030319DOI Listing

Publication Analysis

Top Keywords

healthcare practice
24
health services
12
patient healthcare
12
healthcare
11
megacity istanbul
8
input parameters
8
article short
8
short planning
8
planning times
8
times flexible
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!