The treatment of locally advanced rectal cancer (LARC) requires a multimodal approach combining neoadjuvant radiotherapy or chemoradiotherapy (CRT) and surgery. Predicting tumor response to CRT can guide clinical decision making and improve patient care while avoiding unnecessary toxicity and morbidity. Circulating biomarkers offer both the advantage to be easily accessed and followed over time. In recent years, biomarkers such as proteins, blood cells, or nucleic acids have been investigated for their predictive value in oncology. We conducted a comprehensive literature review with the aim to summarize the status of circulating biomarkers predicting response to CRT in LARC. Forty-nine publications, of which forty-seven full-text articles, one review and one systematic review, were retrieved. These studies evaluated circulating markers (CEA and CA 19-9), inflammatory biomarkers (CRP, albumin, and lymphocytes), hematologic markers (hemoglobin and thrombocytes), lipids and circulating nucleic acids (cell-free DNA [cfDNA], circulating tumor DNA [ctDNA], and microRNA [miRNA]). Post-CRT CEA levels had the most consistent association with tumor response, while cfDNA integrity index, MGMT promoter methylation, ERCC-1, miRNAs, and miRNA-related SNPs were identified as potential predictive markers. Although circulating biomarkers hold great promise, inconsistent results, low statistical power, and low specificity and sensibility prevent them from reliably predicting tumor response following CRT. Validation and standardization of methods and technologies are further required to confirm results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913546 | PMC |
http://dx.doi.org/10.3390/cells12030413 | DOI Listing |
Mol Cancer
January 2025
Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China.
The polymorphic microbiome is considered a new hallmark of cancer. Advances in High-Throughput Sequencing have fostered rapid developments in microbiome research. The interaction between cancer cells, immune cells, and microbiota is defined as the immuno-oncology microbiome (IOM) axis.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
The last decade has witnessed unprecedented succusses with the use of immune checkpoint inhibitors in treating cancer. Nevertheless, the proportion of patients who respond favorably to the treatment remained rather modest, partially due to treatment resistance. This has fueled a wave of research into potential mechanisms of resistance to immune checkpoint inhibitors which can be classified into primary resistance or acquired resistance after an initial response.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 41001l, China.
Biometallic ions play a crucial role in regulating the immune system. In recent years, cancer immunotherapy has become a breakthrough in cancer treatment, achieving good efficacy in a wide range of cancers with its specificity and durability advantages. However, existing therapies still face challenges, such as immune tolerance and immune escape.
View Article and Find Full Text PDFJ Transl Med
January 2025
School of Medicine, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, 201908, China.
This review seeks to elucidate the therapeutic potential of tumor necrosis factor receptor 1 (TNFR1) and enhance our comprehension of its role in disease mechanisms. As a critical cell-surface receptor, TNFR1 regulates key signaling pathways, such as nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK), which are associated with pro-inflammatory responses and cell death. The intricate regulatory mechanisms of TNFR1 signaling and its involvement in various diseases, including inflammatory disorders, infectious diseases, cancer, and metabolic syndromes, have attracted increasing scholarly attention.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
H3 lysine 4 trimethylation (H3K4me3) modification and related regulators extensively regulate various crucial transcriptional courses in health and disease. However, the regulatory relationship between H3K4me3 modification and anti-tumor immunity has not been fully elucidated. We identified 72 independent prognostic genes of lung adenocarcinoma (LUAD) whose transcriptional expression were closely correlated with known 27 H3K4me3 regulators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!