Conjugation with the small ubiquitin-like modifier (SUMO) modulates protein interactions and localisation. The kinase Aurora B, a key regulator of mitosis, was previously identified as a SUMOylation target in vitro and in assays with overexpressed components. However, where and when this modification genuinely occurs in human cells was not ascertained. Here, we have developed intramolecular Proximity Ligation Assays (PLA) to visualise SUMO-conjugated Aurora B in human cells in situ. We visualised Aurora B-SUMO products at centromeres in prometaphase and metaphase, which declined from anaphase onwards and became virtually undetectable at cytokinesis. In the mitotic window in which Aurora B/SUMO products are abundant, Aurora B co-localised and interacted with NUP358/RANBP2, a nucleoporin with SUMO ligase and SUMO-stabilising activity. Indeed, in addition to the requirement for the previously identified PIAS3 SUMO ligase, we found that NUP358/RANBP2 is also implicated in Aurora B-SUMO PLA product formation and centromere localisation. In summary, SUMOylation marks a distinctive window of Aurora B functions at centromeres in prometaphase and metaphase while being dispensable for functions exerted in cytokinesis, and RANBP2 contributes to this control, adding a novel layer to modulation of Aurora B functions during mitosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913629 | PMC |
http://dx.doi.org/10.3390/cells12030372 | DOI Listing |
J Am Coll Cardiol
December 2024
Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA; Adult and Child Center for Outcomes Research and Delivery Science, University of Colorado School of Medicine, Aurora, Colorado, USA.
As expensive therapeutics rise to the fore of heart failure management, out-of-pocket (OOP) medication costs have become increasingly relevant to patient care. Prescription medication costs influence medical decision-making and affect adherence. Yet, individualized cost estimates are seldom available during clinical encounters when prescription decisions are made.
View Article and Find Full Text PDFPharmaceutics
December 2024
Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children's at Diamond Children's Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA.
Dysregulated inflammation and oxidative stress are strongly implicated in the pathogenesis of inflammatory bowel disease. We have developed a novel therapeutic that targets inflammation and oxidative stress. It is comprised of microRNA-146a (miR146a)-loaded cerium oxide nanoparticles (CNPs) (CNP-miR146a).
View Article and Find Full Text PDFToxics
December 2024
Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA.
The World Health Organization has classified air pollution as a carcinogen, and polycyclic aromatic hydrocarbons (PAHs) are major components of air particulates of carcinogenic concern. Thus far, most studies focused on genotoxic high molecular weight PAHs; however, recent studies indicate potential carcinogenicity of the non-genotoxic lower molecular weight PAHs (LMW PAHs) that are found in indoor and outdoor air pollution as well as secondhand cigarette smoke. We hypothesize that LMW PAHs contribute to the promotion stage of cancer when combined with benzo[]pyrene (B[]P), a legacy PAH.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
Background: Tetrahydrocannabivarin (THCV) is a phytocannabinoid commonly found in cannabis with potential pharmacological properties; however, its post-acute pharmacokinetics (PK) in humans have not been studied yet. THCV has two isomers, Δ9- and Δ8-THCV, which seem to have different pharmacological properties. We investigated the PK of the Δ8-THCV isomer after oral administration as part of a two-phase, dose-ranging, placebo-controlled trial in healthy participants.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan.
In almost all cancers, the p53 pathway is disabled and cancer cells survive. Hence, it is crucially important to induce cell death independent of p53 in the treatment of cancers. The transcription factor E2F1 is controlled by binding of the tumor suppressor pRB, and induces apoptosis by activating the gene, an upstream activator of p53, when deregulated from pRB by loss of pRB function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!