Differentiation of pluripotent stem cells (PSCs) is a promising approach to obtaining large quantities of skeletal myogenic progenitors for disease modeling and cell-based therapy. However, generating skeletal myogenic cells with high regenerative potential is still challenging. We recently reported that skeletal myogenic progenitors generated from mouse PSC-derived teratomas possess robust regenerative potency. We have also found that teratomas derived from human PSCs contain a skeletal myogenic population. Here, we showed that these human PSC-derived skeletal myogenic progenitors had exceptional engraftability. A combination of cell surface markers, CD82, ERBB3, and NGFR enabled efficient purification of skeletal myogenic progenitors. These cells expressed PAX7 and were able to differentiate into MHC+ multinucleated myotubes. We further discovered that these cells are expandable in vitro. Upon transplantation, the expanded cells formed new dystrophin fibers that reconstituted almost ¾ of the total muscle volume, and repopulated the muscle stem cell pool. Our study, therefore, demonstrates the possibility of producing large quantities of engraftable skeletal myogenic cells from human PSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913306 | PMC |
http://dx.doi.org/10.3390/cells12030362 | DOI Listing |
J Cachexia Sarcopenia Muscle
February 2025
Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
Background: COVID-19 has been associated with both respiratory (diaphragm) and non-respiratory (limb) muscle atrophy. It is unclear if SARS-CoV-2 infection of skeletal muscle plays a role in these changes. This study sought to: 1) determine if cells comprising skeletal muscle tissue, particularly myofibres, express the molecular components required for SARS-CoV-2 infection; 2) assess the capacity for direct SARS-CoV-2 infection and its impact on atrophy pathway genes in myogenic cells; and 3) in an animal model of COVID-19, examine the relationship between viral infection of skeletal muscle and myofibre atrophy within the diaphragm and limb muscles.
View Article and Find Full Text PDFTrop Anim Health Prod
January 2025
Department of Agricultural Biotechnology, Faculty of Agriculture, Kırşehir Ahi Evran University, 40100, Kirsehir, Türkiye.
The present study was conducted on specific skeletal muscles of six weaned male kids from each of the Angora, Hair, Honamlı, and Kilis goat breeds. The relationships between the expression of myogenic factor 5 (Myf5) and myogenic factor 6 (Myf6) genes and muscle fibre characteristics were analysed. Muscle samples from the longissimus dorsi (LD) and semitendinosus (ST) were collected from six 90-day-old weaned male kids of each breed.
View Article and Find Full Text PDFGenomics
January 2025
Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology of Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China; Yazhouwan National Laboratory, 8 huanjin Road, Yazhou District, Sanya, City, Hainan Province 572024, China. Electronic address:
Intramuscular fat is an essential component of muscle tissue, and understanding its contribution to skeletal muscle fat infiltration and meat quality, together with the underlying genetic mechanisms, is a major topic in pig husbandry. However, the composition of cell types and gene expression profiles essential for this purpose remain largely unexplored. Here, we performed single-cell transcriptome analysis on muscle tissue from adult pigs and identified 15 cell types, including three previously uncharacterized types of adipocytes: Adipocyte 1, Adipocyte 2, and Aregs.
View Article and Find Full Text PDFJ Anat
January 2025
Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg-Frederiksberg, Copenhagen, Denmark.
Tendon injuries and disorders associated with mechanical tendon overuse are common musculoskeletal problems. Even though tendons play a central role in human movement, the intrinsic healing process of tendon is very slow. So far, it is known that tendon cell activity is supported by several interstitial cells within the tendon.
View Article and Find Full Text PDFVet Sci
December 2024
College of Veterinary Medicine, Yangzhou University/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou 225009, China.
This study investigated the effects of long-term serum starvation on autophagy, metabolism, and differentiation of porcine skeletal muscle satellite cells (SMSCs) and elucidated the role of autophagy in skeletal muscle development. Our findings provide a theoretical basis for improving meat production in domestic pigs. The SMSCs isolated and preserved in our laboratory were revived and divided into six groups based on the culture medium serum concentration to simulate varying levels of serum starvation: 20% serum (control group), 15% serum (mild serum starvation group), 5% serum (severe serum starvation group), and their autophagy inhibition groups supplemented with 3-methyladenine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!