The virus responsible for COVID-19 is mutating day by day with more infectious characteristics. With the limited healthcare resources and overburdened medical practitioners, it is almost impossible to contain this virus. The automatic identification of this viral infection from chest X-ray (CXR) images is now more demanding as it is a cheaper and less time-consuming diagnosis option. To that cause, we have applied deep learning (DL) approaches for four-class classification of CXR images comprising COVID-19, normal, lung opacity, and viral pneumonia. At first, we extracted features of CXR images by applying a local binary pattern (LBP) and pre-trained convolutional neural network (CNN). Afterwards, we utilized a pattern recognition network (PRN), support vector machine (SVM), decision tree (DT), random forest (RF), and k-nearest neighbors (KNN) classifiers on the extracted features to classify aforementioned four-class CXR images. The performances of the proposed methods have been analyzed rigorously in terms of classification performance and classification speed. Among different methods applied to the four-class test images, the best method achieved classification performances with 97.41% accuracy, 94.94% precision, 94.81% recall, 98.27% specificity, and 94.86% F1 score. The results indicate that the proposed method can offer an efficient and reliable framework for COVID-19 detection from CXR images, which could be immensely conducive to the effective diagnosis of COVID-19-infected patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914163 | PMC |
http://dx.doi.org/10.3390/diagnostics13030574 | DOI Listing |
J Imaging Inform Med
January 2025
Leiden University Medical Center (LUMC), Leiden, the Netherlands.
Rising computed tomography (CT) workloads require more efficient image interpretation methods. Digitally reconstructed radiographs (DRRs), generated from CT data, may enhance workflow efficiency by enabling faster radiological assessments. Various techniques exist for generating DRRs.
View Article and Find Full Text PDFPLOS Glob Public Health
January 2025
Médecins Sans Frontières, International, Geneva, Switzerland.
Ultraportable (UP) X-ray devices are ideal to use in community-based settings, particularly for chest X-ray (CXR) screening of tuberculosis (TB). Unfortunately, there is insufficient guidance on the radiation safety of these devices. This study aims to determine the radiation dose by UP X-ray devices to both the public and radiographers compared to international dose limits.
View Article and Find Full Text PDFJ Imaging
January 2025
Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan.
Pneumonia, a leading cause of mortality in children under five, is usually diagnosed through chest X-ray (CXR) images due to its efficiency and cost-effectiveness. However, the shortage of radiologists in the Least Developed Countries (LDCs) emphasizes the need for automated pneumonia diagnostic systems. This article presents a Deep Learning model, Zero-Order Optimized Convolutional Neural Network (ZooCNN), a Zero-Order Optimization (Zoo)-based CNN model for classifying CXR images into three classes, Normal Lungs (NL), Bacterial Pneumonia (BP), and Viral Pneumonia (VP); this model utilizes the Adaptive Synthetic Sampling (ADASYN) approach to ensure class balance in the Kaggle CXR Images (Pneumonia) dataset.
View Article and Find Full Text PDFTrauma Surg Acute Care Open
December 2024
Department of Surgery, Division of Trauma & Acute Care Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Background: Bedside thoracic ultrasound (US) offers numerous advantages over chest X-ray (CXR) for identification of recurrent pneumothoraces (PTX) after tube thoracostomy (TT) removal. Technologic advancements have led to the development of hand-held devices capable of producing high-quality images termed ultra-portable US (UPUS). We hypothesized that UPUS would be as successful as CXR in detecting post-TT removal PTX and would be preferred by patients.
View Article and Find Full Text PDFTransl Lung Cancer Res
December 2024
Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea.
Background: Despite the importance of early diagnosis of lung cancer and wide availability of chest radiography, the detection of operable stage lung cancer on chest radiographs (CXRs) remains challenging. This study aimed to investigate the effectiveness of artificial intelligence (AI)-based CXR analysis for detecting operable lung cancers.
Methods: Patients who underwent lung cancer surgery at two referral hospitals between March 2020 and February 2021 were retrospectively included in this study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!