Fish conjoin environmental geometry with conspicuous landmarks to reorient towards foraging sites and social stimuli. Zebrafish () can merge a rectangular opaque arena with a 2D landmark (a blue-colored wall) but cannot merge a rectangular transparent arena with a 3D landmark (a blue cylinder) without training to "feel" the environment thanks to other-than-sight pathways. Thus, their success is linked to tasks differences (spontaneous vs. rewarded). This study explored the reorientation behavior of zebrafish within a rectangular transparent arena, with a blue cylinder outside, proximal to/distal from a target corner position, on the short/long side of the arena. Adult males were extensively trained to distinguish the correct corner from the rotational one, sharing an equivalent metric-sense relationship (short surface left, long surface right), to access food and companions. Results showed that zebrafish's reorientation behavior was driven by both the non-visual geometry and the visual landmark, partially depending on the landmark's proximity and surface length. Better accuracy was attained when the landmark was proximal to the target corner. When long-term experience was allowed, zebrafish handled non-visual and visual sensory stimulations over time for reorienting. We advance the possibility that multisensory processes affect fish's reorientation behavior and spatial learning, providing a link through which to investigate animals' exploratory strategies to face situations of visual deprivation or impairments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913453 | PMC |
http://dx.doi.org/10.3390/ani13030440 | DOI Listing |
J Am Chem Soc
January 2025
Department of Earth Science, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
The compression behavior of iron oxyhydroxide ε-FeOOH is complex, with variations in its magnetic property and bonding character. In this study, in situ powder neutron diffraction experiments were conducted on ε-FeOOH and ε-FeOOD up to pressures exceeding 20 GPa to investigate a spin-reorientation (spin-flop) transition, hydrogen-bond (H-bond) symmetrization, and their correlation. The magnetic transition was observed at 8 GPa in both ε-FeOOH and ε-FeOOD.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
Objective: This study was to employ 18F-flurodeoxyglucose (FDG-PET) to evaluate the resting-state brain glucose metabolism in a sample of 46 patients diagnosed with disorders of consciousness (DoC). The aim was to identify objective quantitative metabolic indicators and predictors that could potentially indicate the level of awareness in these patients.
Methods: A cohort of 46 patients underwent Coma Recovery Scale-Revised (CRS-R) assessments in order to distinguish between the minimally conscious state (MCS) and the unresponsive wakefulness syndrome (UWS).
Unlabelled: Myosin-IC (myo1c) is a class-I myosin that supports transport and remodeling of the plasma membrane and membrane-bound vesicles. Like other members of the myosin family, its biochemical kinetics are altered in response to changes in mechanical loads that resist the power stroke. However, myo1c is unique in that the primary force-sensitive kinetic transition is the isomerization that follows ATP binding, not ADP release as in other slow myosins.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 61801.
Bacteria engage in surface-specific behaviors that are assumed to be driven by biological signaling. However, surface behaviors could be controlled by mechanical reorientation of bacterial appendages. Here, we use microfluidics and flagellar labeling to discover how shear force bends flagella to control surface behavior of the human pathogen .
View Article and Find Full Text PDFProteins
January 2025
Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India.
The structural plasticity of proteins at the molecular level is largely dictated by backbone torsion angles, which play a critical role in ligand recognition and binding. To establish the anion-induced cooperative arrangement of the main-chain (mc) torsion, herein, we analyzed a set of naturally occurring CαNN motifs as "static models" for their anion-binding competence through docking and molecular dynamics simulations and decoded its torsion angle influenced mc-driven anion recognition potential. By comparing a pool of 20 distinct sets of CαNN motif with identical sequences in their "anion bound/present, aP" and "anion free/absent, aA" versions, we could discern that there exists a positive correlation between the "difference of anion residence time (ΔR)" and "difference among the main-chain torsion angle" of the aP and aA population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!