Role of Dietary Methyl Sulfonyl Methane in Poultry.

Animals (Basel)

Department of Animal Science and Technology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea.

Published: January 2023

Oxidative stress is defined as an imbalance between pro-oxidants and anti-oxidants within biological systems, leading to tissue damage and compromising the health of afflicted animals. The incorporation of dietary anti-oxidants into chicken diets has been a common practice to improve the performance, health, and welfare of the host by protecting against oxidative stress-induced damage. Methyl sulfonyl methane (MSM), a naturally occurring organosulfur compound found in various plant sources, has demonstrated various beneficial biological properties, including anti-inflammatory and anti-oxidant properties in both in vitro and in vivo studies. MSM has been utilized as a dietary supplement for humans for its anti-oxidant, analgesic, and anti-inflammatory properties. It has also been administered to domestic animals, including cattle, pigs, and chickens, owing to its recognized anti-oxidant effect. This review summarizes the biological and physiological functions of dietary MSM in poultry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913537PMC
http://dx.doi.org/10.3390/ani13030351DOI Listing

Publication Analysis

Top Keywords

methyl sulfonyl
8
sulfonyl methane
8
role dietary
4
dietary methyl
4
methane poultry
4
poultry oxidative
4
oxidative stress
4
stress defined
4
defined imbalance
4
imbalance pro-oxidants
4

Similar Publications

Acyl thiourea scaffolds are frequently employed in drug development to discern unique and essential therapies for the eradication of the most challenging diseases. Hence, we developed a library of novel cyclopropyl incorporating acyl thiourea derivatives (4a-j) and evaluated their antimicrobial, α-amylase, and proteinase K inhibition potential. Compound (4h) (4-methoxy) demonstrated the strongest α-amylase inhibition (IC = 1.

View Article and Find Full Text PDF

MSAB limits osteoarthritis development and progression through inhibition of β-catenin-DDR2 signaling.

Bioact Mater

April 2025

Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

The aberrant activation of the canonical Wnt/β-catenin signaling has been identified as a significant contributor to the pathogenesis of osteoarthritis (OA), exacerbating OA symptoms and driving OA progression. Despite its potential as a therapeutic target, clinical translation is impeded by the lack of a targeting delivery system and effective drug candidate that can modulate steady-state protein levels of β-catenin at post-translational level. Our study addresses these challenges by offering a new approach for OA treatment.

View Article and Find Full Text PDF

Nowadays, nucleic acid derivatives capable of modulating gene expression at the RNA level have gained widespread recognition as promising therapeutic agents. A suitable degree of biological stability of oligonucleotide therapeutics is required for in vivo application; this can be most expeditiously achieved by the chemical modification of the internucleotidic phosphate group, which may also affect their cellular uptake, tissue distribution and pharmacokinetics. Our group has previously developed a strategy for the chemical modification of the phosphate group via the Staudinger reaction on a solid phase of the intermediate dinucleoside phosphite triester and a range of, preferably, electron deficient organic azides such as sulfonyl azides during automated solid-phase DNA synthesis according to the conventional β-cyanoethyl phosphoramidite scheme.

View Article and Find Full Text PDF

Effective modifications for the buried interface between self-assembled monolayers (SAMs) and perovskites are vital for the development of efficient, stable inverted perovskite solar cells (PSCs) and their tandem photovoltaics. Herein, an ionic-liquid-SAM hybrid strategy is developed to synergistically optimize the uniformity of SAMs and the crystallization of perovskites above. Specifically, an ionic liquid of 1-butyl-3-methyl-1H-imidazol-3-iumbis((trifluoromethyl)sulfonyl)amide (BMIMTFSI) is incorporated into the SAM solution, enabling reduced surface roughness, improved wettability, and a more evenly distributed surface potential of the SAM film.

View Article and Find Full Text PDF

Two new phenyl-sulfonyl-indole derivatives, namely, -{[3-bromo-1-(phenyl-sulfon-yl)-1-indol-2-yl]meth-yl}--(4-bromo-3-meth-oxy-phen-yl)benzene-sulfonamide, CHBrNOS, (), and ,-bis-{[3-bromo-1-(phenyl-sulfon-yl)-1-indol-2-yl]meth-yl}benzene-sulfonamide, CHBrNOS, (), reveal the impact of intra-molecular π-π inter-actions of the indole moieties as a factor not only governing the conformation of ,-bis-(1-indol-2-yl)meth-yl)amines, but also significantly influencing the crystal patterns. For , the crystal packing is dominated by C-H⋯π and π-π bonding, with a particular significance of mutual indole-indole inter-actions. In the case of , the mol-ecules adopt short intra-molecular π-π inter-actions between two nearly parallel indole ring systems [with the centroids of their pyrrole rings separated by 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!