Salvianolic Acid B Regulates Oxidative Stress, Autophagy and Apoptosis against Cyclophosphamide-Induced Hepatic Injury in Nile Tilapia ().

Animals (Basel)

Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.

Published: January 2023

Salvianolic acid B (Sal B), as one of the main water-soluble components of , has significant pharmacological activities, including antioxidant, free radical elimination and biofilm protection actions. However, the protective effect of Sal B on Nile tilapia and the underlying mechanism are rarely reported. Therefore, the aim of this study was to evaluate the effects of Sal B on antioxidant stress, apoptosis and autophagy in Nile tilapia liver. In this experiment, Nile tilapia were fed diets containing sal B (0.25, 0.50 and 0.75 g·kg) for 60 days, and then the oxidative hepatic injury of the tilapia was induced via intrapleural injection of 50 g·kg cyclophosphamide (CTX) three times. After the final exposure to CTX, the Nile tilapia were weighed and blood and liver samples were collected for the detection of growth and biochemical indicators, pathological observations and TUNEL detection, as well as the determination of mRNA expression levels. The results showed that after the CTX treatment, the liver was severely damaged, the antioxidant capacity of the Nile tilapia was significantly decreased and the hepatocyte autophagy and apoptosis levels were significantly increased. Meanwhile, dietary Sal B can not only significantly improve the growth performance of tilapia and effectively reduce CTX-induced liver morphological lesions, but can also alleviate CTX-induced hepatocyte autophagy and apoptosis. In addition, Sal B also significantly regulated the expression of genes related to antioxidative stress, autophagy and apoptosis pathways. This suggested that the hepatoprotective effect of Sal B may be achieved through various pathways, including scavenging free radicals and inhibiting hepatocyte apoptosis and autophagy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913662PMC
http://dx.doi.org/10.3390/ani13030341DOI Listing

Publication Analysis

Top Keywords

nile tilapia
24
autophagy apoptosis
16
salvianolic acid
8
stress autophagy
8
hepatic injury
8
tilapia
8
apoptosis autophagy
8
hepatocyte autophagy
8
sal
7
autophagy
6

Similar Publications

Microplastics, particles between 0.001 and 5 mm in diameter, are ubiquitous in the environment and their consumption by aquatic organisms is known to lead to a variety of adverse effects. However, studies on the effects of microplastics on prey fish have not shown consistent trends, with results varying across species and plastic type used.

View Article and Find Full Text PDF

() aquaculture continues to significantly contribute to the growth of the aquaculture sector in Uganda. However, its production is beset by erratic and unreliable seed supply. Also, most hatcheries practice inbreeding of broodstock, resulting in inferior seed characterized by low growth rates.

View Article and Find Full Text PDF

Enhancement of Growth, Antioxidant Activity, and Immunity in Nile Tilapia () Through Recombinant Expressing L-Gulonolactone Oxidase.

Antioxidants (Basel)

January 2025

School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand.

Due to its lack of the L-gulonolactone oxidase () enzyme, Nile tilapia is unable to synthesize vitamin C; thus, it requires an adequate level of exogenous vitamin C in its diet. To enhance antioxidant properties and vitamin C-related effects, we employed recombinant technology to integrate the -encoding gene into the chromosome. In this study, fish were divided into four groups: those fed with a basal diet (CON), a basal diet + vitamin C (VC), a basal diet + wild-type (BS), and a basal diet + recombinant (BS+GULO).

View Article and Find Full Text PDF

Corn and soybeans are commodities and ingredients of global interest, whose prices fluctuate based on global demands. In this sense, this study aimed to assess ora-pro-nóbis ( leaf meal (OLM) as an alternative to be included in the diets of Nile tilapia (). The optimal inclusion level of OLM in tilapia diets is investigated herein, aiming to improve their growth performance and health.

View Article and Find Full Text PDF

Uncovering the chromatin-mediated transcriptional regulatory network governing cold stress responses in fish immune cells.

J Genet Genomics

January 2025

Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China. Electronic address:

Temperature fluctuations challenge ectothermic species, particularly tropical fish dependent on external temperatures for physiological regulation. However, the molecular mechanisms through which low-temperature stress impacts immune responses in these species, especially in relation to chromatin accessibility and epigenetic regulation, remain poorly understood. In this study, we investigate chromatin and transcriptional changes in the head kidney and thymus tissues of Nile tilapia (Oreochromis niloticus), a tropical fish of significant economic importance, under cold stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!