Red king crab () is a large shelf species native to the Pacific Ocean. Due to its high commercial value, this species was introduced into the Barents Sea, where it has formed a new population that now supports a stable commercial fishery. Information on fatty acid profiles in different tissues of the Barents Sea is scarce. For this reason, the gonads of red king crabs collected at a coastal site in the Barents Sea during the summer were analyzed for fatty acid composition by gas-liquid chromatography. The proportions of total saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids in the ovaries of were 25.9 ± 2.0%, 22.5 ± 2.3%, and 51.6 ± 2.5%, respectively; in the testes, these levels accounted for 35.1 ± 5.7%, 19.1 ± 2.0%, and 45.8 ± 4.5%, respectively. Fatty acid profiles were similar in larger and smaller red king crabs and crabs with old and new shells. Concentrations of fatty acids were higher in ovaries compared to testes, reflecting higher reproductive efforts in female red king crabs. High levels of docosahexaenoic and eicosapentaenoic fatty acids detected in the ovaries of red king crabs from the Barents Sea indicate that these gonads can be a good alternative source for these fatty acids in the human diet and/or for extracting important fatty acids for use in the medical and pharmaceutical industries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913702PMC
http://dx.doi.org/10.3390/ani13030336DOI Listing

Publication Analysis

Top Keywords

fatty acids
28
red king
24
barents sea
20
fatty acid
16
king crabs
16
acid profiles
12
fatty
11
gonads red
8
king crab
8
acids
7

Similar Publications

Fecal microbiota transplantation (FMT) could significantly alter the recipient's gut bacteria composition and attenuate obesity and obesity-related metabolic syndromes. DL-norvaline is a nonproteinogenic amino acid and possesses anti-obesity potential. However, the specific mechanisms by which gut microbiota might mediate beneficial effects of DL-norvaline have not been completely elucidated.

View Article and Find Full Text PDF

Background And Aims: Chronic fatigue is common in patients with inflammatory bowel disease (IBD). The gut microbiota, specifically, microbial diversity and butyrate-producing bacteria have been linked to the fatigue pathogenesis. High-dose oral thiamine reduces fatigue, potentially through gut microbiota modification.

View Article and Find Full Text PDF

This study provides a comprehensive investigation of antimicrobial additives (ZnO/AgNPs and SiO/AgNPs) on the properties of biodegradable ternary blends composed of poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL) by examining the morphology, thermal stability, crystallinity index, and cell viability of these blends. Overall, transmission electron microscopy (TEM) analysis revealed that AgNPs and SiO exhibited comparable sizes, whereas ZnO was significantly larger, which influences their release profiles and interactions with the blends. The addition of antimicrobials influences the rheology of the blends, acting as compatibilizers by reducing the intermolecular forces between biopolymers.

View Article and Find Full Text PDF

Background: The objective of this study was to evaluate the effects of dietary fatty acids (FA) saturation and lysophospholipids supplementation on growth, meat quality, oxidative stability, FA profiles, and lipid metabolism of finishing beef bulls. Thirty-two Angus bulls (initial body weight: 623 ± 22.6 kg; 21 ± 0.

View Article and Find Full Text PDF

Background: Cows that develop metritis experience dysbiosis of their uterine microbiome, where opportunistic pathogens overtake uterine commensals. An effective immune response is critical for maintaining uterine health. Nonetheless, periparturient cows experience immune dysregulation, which seems to be intensified by prepartum over-condition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!