AI Article Synopsis

  • The study focuses on using nanoemulsion technology to enhance the development of functional beverages that can encapsulate bioactive compounds safely through the digestive system.
  • It involves evaluating a protein-rich by-product as an emulsifier and experimenting with various concentrations of soy protein isolate, pH levels, and pressure settings during emulsification.
  • Results indicated that the optimal stability for these nanoemulsions was achieved with 2.0 wt% protein concentration, a pH of 2.0, and a homogenization pressure of 120 PSI.

Article Abstract

The production of biologically active molecules or the addition of new bioactive ingredients in foods, thereby producing functional foods, has been improved with nanoemulsion technology. In this sense, the aim of this work was to develop nanoemulsified beverages as potential candidates for the encapsulation of bioactive compounds, whose integrity and release across the intestinal tract are controlled by the structure and stability of the interfaces. To achieve this, firstly, a by-product rich-in protein has been evaluated as a potential candidate to act as an emulsifier (chemical content, amino acid composition, solubility, ζ-potential and surface tension were evaluated). Later, emulsions with different soy protein isolate concentrations (0.5, 1.0, 1.5 and 2.0 wt%), pH values (2, 4, 6 and 8) and homogenization pressures (100, 120 and 140 PSI) were prepared using a high-pressure homogenizer after a pre-emulsion formation. Physical (stability via Backscattering and drop size evolution) and rheological (including interfacial analysis) characterizations of emulsions were carried out to characterize their potential as delivery emulsion systems. According to the results obtained, the nanoemulsions showed the best stability when the protein concentration was 2.0 wt%, pH 2.0 and 120 PSI was applied as homogenization pressure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914127PMC
http://dx.doi.org/10.3390/foods12030507DOI Listing

Publication Analysis

Top Keywords

soy protein
8
protein isolate
8
nanoemulsified beverages
8
isolate emulsifier
4
emulsifier nanoemulsified
4
beverages rheological
4
rheological physical
4
physical evaluation
4
evaluation production
4
production biologically
4

Similar Publications

Anaphylaxis due to green beans (): a new phenotype?

Allergol Immunopathol (Madr)

January 2025

Department of Research and Development, Inmunotek SL, Alcalá de Henares, Madrid, Spain.

Background: Anaphylaxis is a severe allergic reaction with increasing incidence in Europe. It is often caused by food, insect venom, and drugs. White, red, and green beans () are legumes of the family consumed worldwide.

View Article and Find Full Text PDF

Soybean (Glycine max) is a leguminous crop cultivated worldwide that accumulates high levels of isoflavones. Although previous research has often focused on increasing the soybean isoflavone content because of the estrogen-like activity of dietary soy in humans, the rapidly increasing demand for soybean as a plant-based meat substitute has raised concerns about excessive isoflavone intake. Therefore, the production of isoflavone-free soybean has been anticipated.

View Article and Find Full Text PDF

Risk ranking of mycotoxins in plant-based meat and dairy alternatives under protein transition scenarios.

Food Res Int

January 2025

Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium.

While reducing the consumption of animal-source foods is recommended for planetary and human health, potential emerging food safety risks associated with the transition to dietary patterns featuring plant-based meat (PBMA) and dairy alternatives (PBDA) remain unexplored. We assessed the exposure to mycotoxins and ranked the associated health risks related to the consumption of PBMA and PBDA. We simulated diets by replacing animal-source proteins with their plant-based alternatives.

View Article and Find Full Text PDF

Nobiletin (NOB), a lipid-soluble polymethoxyflavone with potent antioxidant, antimicrobial, and anti-inflammatory properties, suffers from poor stability and pH sensitivity, limiting its bioavailability. In this study, Pickering high internal phase emulsions (HIPEs) stabilized by soy protein isolate (SPI) and κ-carrageenan (KC) were developed to encapsulate and protect NOB. The emulsions, containing a 75 % medium-chain triglyceride (MCT) volume fraction, were optimized by investigating the effects of pH and KC concentration on the key properties such as the creaming index, particle size, zeta potential, microstructure, and rheology.

View Article and Find Full Text PDF

Regulation of whey protein emulsion gel's structure with pullulan to enhance astaxanthin bioaccessibility.

Carbohydr Polym

March 2025

College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China; National Processing Laboratory for Soybean Industry and Technology, Changchun, China; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China. Electronic address:

In this study, the potential of using an emulsion gel based on whey protein concentrate (WPC) and pullulan (PUL) to encapsulate and deliver astaxanthin (AST) was investigated. PUL concentration was observed to affect the microstructure of WPC/PUL/AST emulsion gels, and the performance of emulsion gels was evaluated by encapsulation efficiency, simulated gastrointestinal digestion, storage stability, hardness, and water holding capacity tests. The WPC/PUL/AST emulsion gels had the highest encapsulation efficiency, gastrointestinal digestion retention, and bioaccessibility of (91.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!