A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of the Maillard Reaction on Properties of Air-Assisted Electrospun Gelatin/Zein/Glucose Nanofibers. | LitMetric

To develop biodegradable, sustainable, and environment-friendly functional food-packaging materials, gelatin/zein/glucose nanofibers were fabricated through air-assisted electrospinning and then crosslinked by the Maillard reaction under mild conditions (60 °C and 50% relative humidity) in this study. Compared to traditional electrospinning, air-assisted electrospinning increased the yield of nanofibers by 10 times, and the average diameter from 263 nm to 664 nm, while the airflow facilitated uniform and smooth nanofiber formation. During the Maillard reaction in 0-5 days, the gelatin/zein/glucose showed no morphology change. Fourier transform infrared spectra analysis indicated that gelatin interacted with zein through hydrogen bonding and the occurrence of the Maillard reaction among the protein and glucose molecules. After four days of Maillard reaction, the nanofibers presented higher thermal stability, the most hydrophobic surface (water contact angle: 133.6°), and stiffer network structure (elastic modulus of 38.63 MPa, tensile strength of 0.85 MPa). Overall, Maillard-reaction-crosslinked gelatin/zein/glucose nanofibers showed favorable physical properties, which suggests their potential for application in food-active packaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9914126PMC
http://dx.doi.org/10.3390/foods12030451DOI Listing

Publication Analysis

Top Keywords

maillard reaction
20
gelatin/zein/glucose nanofibers
12
air-assisted electrospinning
8
reaction
5
nanofibers
5
influence maillard
4
reaction properties
4
properties air-assisted
4
air-assisted electrospun
4
gelatin/zein/glucose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!