Background: Preclinical evidence from us and others demonstrates that the anticancer effects of cyclin-dependent kinase 4/6 (CDK4/6) inhibitors can be enhanced with focal radiation therapy (RT), but only when RT is delivered prior to (rather than after) CDK4/6 inhibition. Depending on tumor model, cellular senescence (an irreversible proliferative arrest that is associated with the secretion of numerous bioactive factors) has been attributed beneficial or detrimental effects on response to treatment. As both RT and CDK4/6 inhibitors elicit cellular senescence, we hypothesized that a differential accumulation of senescent cells in the tumor microenvironment could explain such an observation, i.e., the inferiority of CDK4/6 inhibition with palbociclib (P) followed by RT (P→RT) as compared to RT followed by palbociclib (RT→P).
Methods: The impact of cellular senescence on the interaction between RT and P was assessed by harnessing female INK-ATTAC mice, which express a dimerizable form of caspase 8 (CASP8) under the promoter of cyclin dependent kinase inhibitor 2A (Cdkn2a, coding for p16), as host for endogenous mammary tumors induced by the subcutaneous implantation of medroxyprogesterone acetate (MPA, M) pellets combined with the subsequent oral administration of 7,12-dimethylbenz[a]anthracene (DMBA, D). This endogenous mouse model of HR mammary carcinogenesis recapitulates key immunobiological aspects of human HR breast cancer. Mice bearing M/D-driven tumors were allocated to RT, P or their combination in the optional presence of the CASP8 dimerizer AP20187, and monitored for tumor growth, progression-free survival and overall survival. In parallel, induction of senescence in vitro, in cultured human mammary hormone receptor (HR) adenocarcinoma MCF7 cells, triple negative breast carcinoma MDA-MB-231 cells and mouse HR mammary carcinoma TS/A cells treated with RT, P or their combination, was determined by colorimetric assessment of senescence-associated β-galactosidase activity after 3 or 7 days of treatment.
Results: In vivo depletion of p16-expressing (senescent) cells ameliorated the efficacy of P→RT (but not that of RT→P) in the M/D-driven model of HR mammary carcinogenesis. Accordingly, P→RT induced higher levels of cellular senescence than R→TP in cultured human and mouse breast cancer cell lines.
Conclusions: Pending validation in other experimental systems, these findings suggest that a program of cellular senescence in malignant cells may explain (at least partially) the inferiority of P→RT versus RT→P in preclinical models of HR breast cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9921325 | PMC |
http://dx.doi.org/10.1186/s12967-023-03964-4 | DOI Listing |
Aging (Albany NY)
January 2025
Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
Exposure to ionizing radiation (IR), both low-LET (e.g., X-rays, γ rays) and high-LET (e.
View Article and Find Full Text PDFCells
January 2025
Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
The p63 protein is a master regulatory transcription factor that plays crucial roles in cell differentiation, adult tissue homeostasis, and chromatin remodeling, and its dysregulation is associated with genetic disorders, physiological and premature aging, and cancer. The effects of p63 are carried out by two main isoforms that regulate cell proliferation and senescence. p63 also controls the epigenome by regulating interactions with histone modulators, such as the histone acetyltransferase p300, deacetylase HDAC1/2, and DNA methyltransferases.
View Article and Find Full Text PDFCells
December 2024
Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
The Hippo pathway, a kinase cascade, coordinates with many intracellular signals and mediates the regulation of the activities of various downstream transcription factors and their coactivators to maintain homeostasis. Therefore, the aberrant activation of the Hippo pathway and its associated molecules imposes significant stress on tissues and cells, leading to cancer, immune disorders, and a number of diseases. Cellular senescence, the mechanism by which cells counteract stress, prevents cells from unnecessary damage and leads to sustained cell cycle arrest.
View Article and Find Full Text PDFInt J Mol Med
March 2025
Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.
Retinal pigment epithelial (RPE) cells undergoing epithelial‑mesenchymal transition (EMT) are a key factor in promoting the progression of subretinal fibrosis. The klotho protein and gene exert anti‑fibrotic effects in multiple fibrotic diseases. However, the mechanisms involved in the role of klotho are unclear in subretinal fibrosis.
View Article and Find Full Text PDFAging Cell
January 2025
Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing, China.
The current mechanism by which aging reduces salivary secretion is unknown. This study investigates the mechanism of aging-related submandibular (SMG) dysfunction and evaluates the therapeutic potential of dental pulp stem cell-derived exosomes (DPSC-exos). We found that the stimulated salivary flow rate was significantly reduced in naturally aging and D-galactose-induced aging mice (D-gal mice) compared to control mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!