A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionsfcb79gg0oqkt3q1u17ass37glgfaeij): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fluctuation-based outlier detection. | LitMetric

Fluctuation-based outlier detection.

Sci Rep

School of Information Science and Engineering, Xinjiang University, Ürümqi, 830046, China.

Published: February 2023

Outlier detection is an important topic in machine learning and has been used in a wide range of applications. Outliers are objects that are few in number and deviate from the majority of objects. As a result of these two properties, we show that outliers are susceptible to a mechanism called fluctuation. This article proposes a method called fluctuation-based outlier detection (FBOD) that achieves a low linear time complexity and detects outliers purely based on the concept of fluctuation without employing any distance, density or isolation measure. Fundamentally different from all existing methods. FBOD first converts the Euclidean structure datasets into graphs by using random links, then propagates the feature value according to the connection of the graph. Finally, by comparing the difference between the fluctuation of an object and its neighbors, FBOD determines the object with a larger difference as an outlier. The results of experiments comparing FBOD with eight state-of-the-art algorithms on eight real-worlds tabular datasets and three video datasets show that FBOD outperforms its competitors in the majority of cases and that FBOD has only 5% of the execution time of the fastest algorithm. The experiment codes are available at: https://github.com/FluctuationOD/Fluctuation-based-Outlier-Detection .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9918462PMC
http://dx.doi.org/10.1038/s41598-023-29549-1DOI Listing

Publication Analysis

Top Keywords

outlier detection
12
fluctuation-based outlier
8
fbod
6
detection outlier
4
detection topic
4
topic machine
4
machine learning
4
learning wide
4
wide range
4
range applications
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!