Critically ill patient mortality by age: long-term follow-up (CIMbA-LT).

Ann Intensive Care

Grupo de Investigação e Desenvolvimento em Infeção e Sépsis (GISID), Porto, Portugal.

Published: February 2023

Background: The past years have witnessed dramatic changes in the population admitted to the intensive care unit (ICU). Older and sicker patients are now commonly treated in this setting due to the newly available sophisticated life support. However, the short- and long-term benefit of this strategy is scarcely studied.

Methods: The Critically Ill patients' mortality by age: Long-Term follow-up (CIMbA-LT) was a multicentric, nationwide, retrospective, observational study addressing short- and long-term prognosis of patients admitted to Portuguese multipurpose ICUs, during 4 years, according to their age and disease severity. Patients were followed for two years after ICU admission. The standardized hospital mortality ratio (SMR) was calculated according to the Simplified Acute Physiology Score (SAPS) II and the follow-up risk, for patients discharged alive from the hospital, according to official demographic national data for age and gender. Survival curves were plotted according to age group.

Results: We included 37.118 patients, including 15.8% over 80 years old. The mean SAPS II score was 42.8 ± 19.4. The ICU all-cause mortality was 16.1% and 76% of all patients survive until hospital discharge. The SAPS II score overestimated hospital mortality [SMR at hospital discharge 0.7; 95% confidence interval (CI) 0.63-0.76] but accurately predicted one-year all-cause mortality [1-year SMR 1.01; (95% CI 0.98-1.08)]. Survival curves showed a peak in mortality, during the first 30 days, followed by a much slower survival decline thereafter. Older patients had higher short- and long-term mortality and their hospital SMR was also slightly higher (0.76 vs. 0.69). Patients discharged alive from the hospital had a 1-year relative mortality risk of 6.3; [95% CI 5.8-6.7]. This increased risk was higher for younger patients [21.1; (95% CI 15.1-39.6) vs. 2.4; (95% CI 2.2-2.7) for older patients].

Conclusions: Critically ill patients' mortality peaked in the first 30 days after ICU admission. Older critically ill patients had higher all-cause mortality, including a higher hospital SMR. A long-term increased relative mortality risk was noted in patients discharged alive from the hospital, but this was more noticeable in younger patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9918627PMC
http://dx.doi.org/10.1186/s13613-023-01102-3DOI Listing

Publication Analysis

Top Keywords

critically ill
16
mortality
12
patients
12
short- long-term
12
patients discharged
12
discharged alive
12
alive hospital
12
all-cause mortality
12
hospital
9
mortality age
8

Similar Publications

Background: Infant alertness and neurologic changes can reflect life-threatening pathology but are assessed by physical exam, which can be intermittent and subjective. Reliable, continuous methods are needed. We hypothesized that our computer vision method to track movement, pose artificial intelligence (AI), could predict neurologic changes in the neonatal intensive care unit (NICU).

View Article and Find Full Text PDF

Digital health interventions in adult intensive care and recovery after critical illness to promote survivorship care.

J Intensive Care Soc

January 2025

Department of Physiotherapy, Faculty of Medicine, Dentistry and Health Sciences, School of Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.

Digital health refers to the field of using and developing technology to improve health outcomes. Digital health and digital health interventions (DHIs) within the area of intensive care and critical illness survivorship are rapidly evolving. Digital health interventions refer to technologies in clinical interventional format.

View Article and Find Full Text PDF

Introduction The pediatric intensive care unit (PICU) is a specialized area for treating critically ill infants and children. However, some of these children may experience poor outcomes, including death. However, it is necessary to predict the prognosis for critically ill patients as early as possible to commence triage as well as an early and effective intervention to prevent mortality.

View Article and Find Full Text PDF

Extension of an ICU-based noninvasive model to predict latent shock in the emergency department: an exploratory study.

Front Cardiovasc Med

December 2024

Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitaion, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.

Background: Artificial intelligence (AI) has been widely adopted for the prediction of latent shock occurrence in critically ill patients in intensive care units (ICUs). However, the usefulness of an ICU-based model to predict latent shock risk in an emergency department (ED) setting remains unclear. This study aimed to develop an AI model to predict latent shock risk in patients admitted to EDs.

View Article and Find Full Text PDF

Introduction: The Sequential Organ Failure Assessment (SOFA) score is a widely utilized clinical tool for evaluating the severity of organ failure in critically ill patients and assessing their condition and prognosis in the intensive care unit (ICU). Research has demonstrated that higher SOFA scores are associated with poorer outcomes in these patients. However, the predictive value of the SOFA score for acute kidney injury (AKI), a common complication of diabetic ketoacidosis (DKA), remains uncertain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!