Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Laboratory clinical decision support (CDS) typically relies on data from the electronic health record (EHR). The implementation of a sustainable, effective laboratory CDS program requires a commitment to standardization and harmonization of key EHR data elements that are the foundation of laboratory CDS. The direct use of artificial intelligence algorithms in CDS programs will be limited unless key elements of the EHR are structured. The identification, curation, maintenance, and preprocessing steps necessary to implement robust laboratory-based algorithms must account for the heterogeneity of data present in a typical EHR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cll.2022.09.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!