Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Detection of highly toxic thiophenols in biological or environmental systems is of great importance. Therefore, fast, reliable, and sensitive probes are needed to detect thiophenols. Herein, a novel triphenylamine conjugated dicyanoisophorone-based near infrared fluorescence probe is reported to determine trace thiophenol (PhSH) levels. The probe demonstrates a distinct "turn-on" fluorescence response to thiophenol among the tested analytes and its quantum yield (Φ) increases from 0.011 to 0.142. It has low cytotoxicity with cell viability of 90-100% up to 10.0 μM of the probe, a strong anti-interference capability, a large Stokes shift (150 nm), and a fast response time (<1 min). In addition, the probe exhibits a good linear response to PhSH over the range from 0 to 15.0 μM with a detection limit of 32.3 nM (R = 0.9978). The detection process is also confirmed through HPLC. The practical applicability of the probe is proved by a smartphone platform, TLC kit, plant tissue imaging, soil assay, tap, and lake water analysis with good recovery values (92.3-117%), and concentration-dependent live cell bioimaging PhSH from 5.0 to 15.0 μM. Therefore, the present probe is a robust candidate for monitoring PhSH levels in biological and environmental systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2023.340901 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!