Optical control of protein function through proteasomal degradation benefits from the noninvasive nature and spatiotemporal precision of light as a trigger. In this chapter, light activation of protein degradation with an optically controlled degron, termed optoDeg, is discussed. This method utilizes genetic code expansion to insert a photocaged analog of lysine at the N-terminal position of a protein of interest for spatial and temporal control of the N-end pathway, inducing proteasomal degradation. Methods for the use of optoDeg for degradation of the fluorescent reporter EGFP and the kinase MEK1 are described. The system is fast, with complete degradation of proteins within minutes following irradiation, and highly specific, with genetically directed introduction of the light-activated degron.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mie.2022.10.001 | DOI Listing |
JACS Au
January 2025
Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
Interfacial enzyme catalysis is widespread in both nature and industry. Granular starch is a sustainable and abundant raw material for which a rigorous correlation of the surface structure with enzymatic degradation is lacking. Here pullulanase-catalyzed debranching of 12 granular starches varying in amylopectin contents and branch chain contents and lengths is shown to present a biphasic relationship characteristic of the Sabatier principle.
View Article and Find Full Text PDFAnal Methods
January 2025
Department of Chemistry, Dibrugarh University, Dibrugarh 786004, Assam, India.
Ammonia or biogenic amines released by protein degradation during food spoilage have various ill effects on human health and the environment. Herein, an economical colorimetric bisphenol-based sensor was developed from inexpensive reagents and a simple synthetic method for detecting ammonia and monitoring food spoilage. The slightest addition of NH significantly changed the absorption of BP, which was reflected in the detection limit value for NH (7.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China.
Background: Continuous fermentation offers advantages in improving production efficiency and reducing costs, making it highly competitive for industrial ethanol production. A key requirement for Saccharomyces cerevisiae strains used in this process is their tolerance to high ethanol concentrations, which enables them to adapt to continuous fermentation conditions. To explore how yeast cells respond to varying levels of ethanol stress during fermentation, a two-month continuous fermentation was conducted.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Grassland Station of Guoluo Prefecture of Qinghai Province, Dawu, Qinghai, 814000, China.
The Qinghai-Tibetan Plateau (QTP), one of the most important ecological regions in the world, is experiencing a decline in ecological function as a result of severe grassland degradation. Elymus nutans is one of the ecological grass species for restoring degraded grasslands in QTP. The seed yield and seed quality are often limited by soil nutrients in QTP, so it is very important to optimize the application rates of fertilizer for E.
View Article and Find Full Text PDFNat Cancer
January 2025
Department of Oncological Sciences, Precision Immunology Institute, the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Cyclin-dependent kinases (CDKs) 4 and 6 (CDK4/6) are important regulators of the cell cycle. Selective CDK4/6 small-molecule inhibitors have shown clinical activity in hormonal receptor-positive (HR) metastatic breast cancer, but their effectiveness remains limited in other cancer types. CDK4/6 degradation and improved selectivity across CDK paralogs are approaches that could expand the effectiveness of CDK4/6 targeting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!