Aim: The aims of this study were to identify the pathogen causing blackcurrant leaf spot, assess the pathogenicity of different isolates, the host range, and the sensitivity to common fungicides, and test the effectiveness of field control for controlling A. alternata in blackcurrants in China, and potentially elsewhere.
Methods And Results: In 2020 and 2021, an uncommon leaf spot on blackcurrants was observed in Harbin (125°42'-130°10'E, 44°04'-46°40'N), Heilongjiang Province, China. Based on morphological, molecular characteristics, and phylogenetic analyses, 10 fungal isolates, identified as Alternaria alternata, were obtained from infected blackcurrant leaves of 10 infected plants in this study. To our knowledge, this is the first description of A. alternata as a causal agent of leaf spot on blackcurrants in China. A. alternata has a wide host range and infects eight of the 10 crop and ornamental plants evaluated, namely Sorbus pohuashanensis, Malus pumila, Rosa davurica, Padus racemosa, Hippophae rhamnoides, Crataegus pinnatifida, Pyrus ussuriensis, and Sambucus williamsii, but not Viburnum trilobum and Prunus tomentosa. Moreover, ten blackcurrant cultivars were screened and found to have contrasting levels of resistance to A. alternata. One was moderately resistant, four were resistant, four were susceptible, and one was highly susceptible. The A. alternata isolate was most sensitive to propiconazole-azoxystrobin, with EC50 values of 0.0038 μg ml-1 and efficacy ranging between 83.34% and 84.13% at 317 μg ml-1 in the field.
Conclusions: The work reported that A. alternata is the pathogen that causes blackcurrant leaf spot in northern China. It can infect a variety of crops and ornamental plants. Considering the control cost and effect, propiconazole-azoxystrobin is more suitable for controlling leaf spot in the field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jambio/lxad025 | DOI Listing |
Biology (Basel)
January 2025
School of Life and Health Science College, Kaili University, Kaili 556011, China.
The industry plays an important role in the economic development of Yuanjiang county of Yuxi city in Yunnan province, China. In order to reduce the harm of diseases and ensure the quality of products, the occurrence of was investigated. The pathogenic fungi of wild and cultivated species of were isolated by a tissue separation method, and DNA sequencing was carried out by using the sequence analysis of the ribosomal rDNA-ITS region, and the pathogenic fungi were classified and identified by finally combining morphological observations.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 150640, China.
Agricultural growers worldwide face significant challenges in promoting plant growth. This research introduces a green strategy utilizing nanomaterials to enhance crop production. While high concentrations of nanomaterials are known to be hazardous to plants, this study demonstrates that low doses of biologically synthesized zinc oxide nanoparticles (ZnO NPs) can serve as an effective regulatory tool to boost plant growth.
View Article and Find Full Text PDFHeliyon
January 2025
Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh.
The present study was conducted to evaluate the efficacy of extract against the white spot syndrome virus (WSSV) in black tiger shrimp () following oral administration . The methanol extract derived from the extraction was sprayed into feed at a concentration of 0.0 %, 0.
View Article and Find Full Text PDFData Brief
February 2025
Department of Computer Science and Engineering, East West University, Aftabnagar, Dhaka, Bangladesh.
Radishes, which are common root vegetables, are rich in vitamins and minerals, and contain low calories. This vegetable is known for its rapid growth. Nevertheless, the variety of leaf diseases where leaves get affected by various bacterial and fungal diseases can hinder the healthy growth of radish.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Department of Phytopathology or Coordination, Institute of Sugar Beet Research, Göttingen, Germany.
Background: Cercospora leaf spot (CLS), caused by Cercospora beticola, is the most destructive foliar disease in sugar beet. CLS is conventionally controlled with fungicide, but the emergence of fungicide-resistant populations reinforces the importance of developing and cultivating resistant varieties. Understanding the dynamics of CLS in different varieties is hence essential for sustainable CLS management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!