Epigenomic modifications of the brain-derived neurotrophic factor (BDNF) gene have been postulated to underlie the pathogenesis of neurodevelopmental, psychiatric, and neurological conditions. This systematic review summarizes current evidence investigating the association of BDNF epigenomic modifications (DNA methylation, non-coding RNA, histone modifications) with brain-related phenotypes in humans. A novel contribution is our creation of an open access web-based application, the BDNF DNA Methylation Map, to interactively visualize specific positions of CpG sites investigated across all studies for which relevant data were available. Our literature search of four databases through September 27, 2021 returned 1701 articles, of which 153 met inclusion criteria. Our review revealed exceptional heterogeneity in methodological approaches, hindering the identification of clear patterns of robust and/or replicated results. We summarize key findings and provide recommendations for future epigenomic research. The existing literature appears to remain in its infancy and requires additional rigorous research to fulfill its potential to explain BDNF-linked risk for brain-related conditions and improve our understanding of the molecular mechanisms underlying their pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164361 | PMC |
http://dx.doi.org/10.1016/j.neubiorev.2023.105078 | DOI Listing |
Cardiovasc Diabetol
January 2025
Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010, Málaga, Spain.
Background: The prevalence of obesity and type 2 diabetes mellitus (T2DM) is rising globally, particularly among children exposed to adverse intrauterine environments, such as those associated with gestational diabetes mellitus (GDM). Epigenetic modifications, specifically DNA methylation, have emerged as mechanisms by which early environmental exposures can predispose offspring to metabolic diseases. This study aimed to investigate DNA methylation differences in children born to mothers with GDM compared to non-GDM mothers, using saliva samples, and to assess the association of these epigenetic patterns with early growth measurements.
View Article and Find Full Text PDFBiologics
January 2025
Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
Introduction: Nasopharyngeal cancer (NPC) is a multifaceted disease characterized by genetic and epigenetic modifications. While Epstein-Barr virus (EBV) infection is a known risk factor, recent studies highlight the significant role of DNA methylation in NPC pathogenesis. Aberrant methylation, particularly at CpG sites, can silence tumour suppressor genes, promoting uncontrolled cell growth.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA.
DNA methylation is an essential epigenetic modification that plays a crucial role in regulating gene expression and maintaining genomic stability. With the advancement in sequencing technology, methylation studies have provided valuable insights into the diagnosis of rare diseases through the various identification of episignatures, epivariation, epioutliers, and allele-specific methylation. However, current methylation studies are not without limitations.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland.
Plants are increasingly exposed to stress-induced factors, including heavy metals. Zinc, although it is a microelement, at high concentrations can be phytotoxic to plants by limiting their growth and development. The presented research confirmed the inhibition effect of Zn on morphological and physiological parameters in barley plants.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016.
Posttranslational modifications (PTMs) of proteins play critical roles in regulating many cellular events. Antibodies targeting site-specific PTMs are essential tools for detecting and enriching PTMs at sites of interest. However, fundamental difficulties in molecular recognition of both PTM and surrounding peptide sequence have hindered the efficient generation of highly sequence-specific anti-PTM antibodies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!