A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis and biological evaluation of 2,5-disubstituted furan derivatives containing 1,3-thiazole moiety as potential α-glucosidase inhibitors. | LitMetric

Synthesis and biological evaluation of 2,5-disubstituted furan derivatives containing 1,3-thiazole moiety as potential α-glucosidase inhibitors.

Bioorg Med Chem Lett

State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Published: March 2023

α-Glucosidase, which is involved in the hydrolysis of carbohydrates to glucose and directly mediates blood glucose elevation, is a crucial therapeutic target for type 2 diabetes. In this work, 2,5-disubstituted furan derivatives containing 1,3-thiazole-2-amino or 1,3-thiazole-2-thiol moiety (III-01 ∼ III-30) were synthesized and screened for their inhibitory activity against α-glucosidase. α-Glucosidase inhibition assay demonstrated that all compounds had IC in the range of 0.645-94.033 μM and more potent than standard inhibitor acarbose (IC = 452.243 ± 54.142 µM). The most promising inhibitors of the two series were compound III-10 (IC = 4.120 ± 0.764 μM) and III-24 (IC = 0.645 ± 0.052 μM), respectively. Kinetic study and molecular docking simulation revealed that compound III-10 (Ki = 2.04 ± 0.72 μM) is a competitive inhibitor and III-24 (Ki = 0.44 ± 0.53 μM) is a noncompetitive inhibitor against α-glucosidase. Significantly, these two compounds showed nontoxicity towards HEK293, RAW264.7 and HepG2 cells, suggesting that compounds may be considered as a class of potential candidates for further developing novel antidiabetic drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2023.129173DOI Listing

Publication Analysis

Top Keywords

25-disubstituted furan
8
furan derivatives
8
compound iii-10
8
α-glucosidase
5
synthesis biological
4
biological evaluation
4
evaluation 25-disubstituted
4
derivatives 13-thiazole
4
13-thiazole moiety
4
moiety potential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!