Air pollution is a serious public health issue with early childhood exposure being of high concern because of the greater risk that children might experience negative health outcomes. Industrial sources in and near communities are one potential path of exposure that children might face with greater levels of air pollution correlating with higher levels of toxicants detected in children. We compare estimated ambient air concentrations of Cadmium (Cd) to a cohort (n = 281) of 9 to 11-year old children during their early childhood years (0-5 years of age) in a mid-size city in Upstate New York. Levels of Cd air pollution are compared to children's urine-Cd levels. Urine has been shown to be a superior biomarker to blood for Cd exposure particularly for longer-term exposures. We find that participants who reside in households that faced greater Cd air pollution during the child's early years have higher urine-Cd levels. This association is stable and stronger than previously presented associations for blood-Cd. Findings support expanded use of air modelling data for risk screening to reduce the potential health burden that industrial pollution can have.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992329PMC
http://dx.doi.org/10.1016/j.envres.2023.115450DOI Listing

Publication Analysis

Top Keywords

air pollution
16
early childhood
8
levels air
8
urine-cd levels
8
air
6
children
5
pollution
5
levels
5
airborne levels
4
levels cadmium
4

Similar Publications

Environmental impact of an acid-forming alum shale waste rock legacy site in Norway.

Environ Sci Process Impacts

January 2025

Environmental Chemistry Section, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway.

Alum shale formations in Scandinavia are generally enriched in uranium (U) and, when exposed to air and water, may produce acidic rock drainage (ARD), releasing potentially harmful elements into the environment. Taraldrud is a legacy site in southeast Norway where approx. 51 000 m of alum shale was deposited in the 1980s-1990s.

View Article and Find Full Text PDF

Estimating the Risk of Women Anemia Associated with Ozone Exposure Across 123 Low- and Middle-Income Countries: A Multicenter Epidemiological Study.

Environ Sci Technol

January 2025

SKL-ESPC and SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China.

Anemia in women of reproductive age (WRA) presents a pressing global public health issue, particularly in low- and middle-income countries (LMICs). Yet, the potential impact of ozone (O) exposure on anemia remains uncertain. The study included 1,467,887 eligible women from 83 surveys of 45 LMICs between 2004 to 2020.

View Article and Find Full Text PDF

The light-absorbing chemical components of atmospheric organic aerosols are commonly referred to as Brown Carbon (BrC), reflecting the characteristic yellowish to brown appearance of aerosol. BrC is a highly complex mixture of organic compounds with diverse compositions and variable optical properties of its individual chromophores. BrC significantly influences the radiative budget of the climate and contributes to adverse air pollution effects such as reduced visibility and the presence of inhalable pollutants and irritants.

View Article and Find Full Text PDF

Extreme weather events, including wildfires, are becoming more intense, frequent, and expansive due to climate change, thus increasing negative health outcomes. However, such effects can vary across space, time, and population subgroups, requiring methods that can handle multiple exposed units, account for time-varying confounding, and capture heterogeneous treatment effects. In this article, we proposed an approach based on staggered generalized synthetic control methods to study heterogeneous health effects, using the 2018 California wildfire season as a case study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!