A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and implementation of a pneumatic micro-feeder for poorly-flowing solid pharmaceutical materials. | LitMetric

Development and implementation of a pneumatic micro-feeder for poorly-flowing solid pharmaceutical materials.

Int J Pharm

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK; Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow G1 1RD, UK. Electronic address:

Published: March 2023

Consistent powder micro-feeding (<100 g/h) is a significant challenge in manufacturing solid oral dosage forms. The low dose feeding can well control the content consistency of the dosage forms, which improves drug efficiency and reduces manufacturing waste. Current commercial micro-feeders are limited in their ability to feed < 20 g/h of cohesive (i.e. powders of poor flowability) active pharmaceutical ingredients (API) and excipients (e.g. lubricants) with low fluctuation. To breach this gap, this study presents an advanced micro-feeder design capable of feeding a range of pharmaceutical-grade powders consistently at flow rates as low as 0.7 g/h with <20 % flow rate variation. This was possible due to a novel powder conveying concept utilising particle re-entrainment to minimise flow rate variations. This work details the design of this pneumatic micro-feeder and its excellent micro-feeding performance even for cohesive powders. The experimental studies investigated the influence of the process parameters (air pressure and air flow rate) and equipment configurations (insert size and plug position) on the feeding performance of different pharmaceutical-relevant powders, i.e., microcrystalline cellulose (MCC), croscarmellose sodium (CCS), crospovidone (XPVP) and paracetamol (APAP). It was shown that the system is capable of delivering consistent powder flow rates with good repeatability and stability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2023.122691DOI Listing

Publication Analysis

Top Keywords

development implementation
4
implementation pneumatic
4
pneumatic micro-feeder
4
micro-feeder poorly-flowing
4
poorly-flowing solid
4
solid pharmaceutical
4
pharmaceutical materials
4
materials consistent
4
consistent powder
4
powder micro-feeding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!